Metamath Proof Explorer


Theorem ovsn

Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypothesis ovsn.1
|- C e. _V
Assertion ovsn
|- ( A { <. <. A , B >. , C >. } B ) = C

Proof

Step Hyp Ref Expression
1 ovsn.1
 |-  C e. _V
2 ovsng
 |-  ( C e. _V -> ( A { <. <. A , B >. , C >. } B ) = C )
3 1 2 ax-mp
 |-  ( A { <. <. A , B >. , C >. } B ) = C