Metamath Proof Explorer


Theorem ovsng2

Description: The operation value of a singleton of an ordered triple is the last member. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Assertion ovsng2
|- ( C e. V -> ( A { <. A , B , C >. } B ) = C )

Proof

Step Hyp Ref Expression
1 df-ot
 |-  <. A , B , C >. = <. <. A , B >. , C >.
2 1 sneqi
 |-  { <. A , B , C >. } = { <. <. A , B >. , C >. }
3 2 oveqi
 |-  ( A { <. A , B , C >. } B ) = ( A { <. <. A , B >. , C >. } B )
4 ovsng
 |-  ( C e. V -> ( A { <. <. A , B >. , C >. } B ) = C )
5 3 4 eqtrid
 |-  ( C e. V -> ( A { <. A , B , C >. } B ) = C )