Step |
Hyp |
Ref |
Expression |
1 |
|
brtpos |
|- ( y e. _V -> ( <. A , B >. tpos F y <-> <. B , A >. F y ) ) |
2 |
1
|
elv |
|- ( <. A , B >. tpos F y <-> <. B , A >. F y ) |
3 |
2
|
iotabii |
|- ( iota y <. A , B >. tpos F y ) = ( iota y <. B , A >. F y ) |
4 |
|
df-fv |
|- ( tpos F ` <. A , B >. ) = ( iota y <. A , B >. tpos F y ) |
5 |
|
df-fv |
|- ( F ` <. B , A >. ) = ( iota y <. B , A >. F y ) |
6 |
3 4 5
|
3eqtr4i |
|- ( tpos F ` <. A , B >. ) = ( F ` <. B , A >. ) |
7 |
|
df-ov |
|- ( A tpos F B ) = ( tpos F ` <. A , B >. ) |
8 |
|
df-ov |
|- ( B F A ) = ( F ` <. B , A >. ) |
9 |
6 7 8
|
3eqtr4i |
|- ( A tpos F B ) = ( B F A ) |