Metamath Proof Explorer


Theorem p0val

Description: Value of poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses p0val.b
|- B = ( Base ` K )
p0val.g
|- G = ( glb ` K )
p0val.z
|- .0. = ( 0. ` K )
Assertion p0val
|- ( K e. V -> .0. = ( G ` B ) )

Proof

Step Hyp Ref Expression
1 p0val.b
 |-  B = ( Base ` K )
2 p0val.g
 |-  G = ( glb ` K )
3 p0val.z
 |-  .0. = ( 0. ` K )
4 elex
 |-  ( K e. V -> K e. _V )
5 fveq2
 |-  ( p = K -> ( glb ` p ) = ( glb ` K ) )
6 5 2 eqtr4di
 |-  ( p = K -> ( glb ` p ) = G )
7 fveq2
 |-  ( p = K -> ( Base ` p ) = ( Base ` K ) )
8 7 1 eqtr4di
 |-  ( p = K -> ( Base ` p ) = B )
9 6 8 fveq12d
 |-  ( p = K -> ( ( glb ` p ) ` ( Base ` p ) ) = ( G ` B ) )
10 df-p0
 |-  0. = ( p e. _V |-> ( ( glb ` p ) ` ( Base ` p ) ) )
11 fvex
 |-  ( G ` B ) e. _V
12 9 10 11 fvmpt
 |-  ( K e. _V -> ( 0. ` K ) = ( G ` B ) )
13 3 12 eqtrid
 |-  ( K e. _V -> .0. = ( G ` B ) )
14 4 13 syl
 |-  ( K e. V -> .0. = ( G ` B ) )