| Step |
Hyp |
Ref |
Expression |
| 1 |
|
p1evtxdeq.v |
|- V = ( Vtx ` G ) |
| 2 |
|
p1evtxdeq.i |
|- I = ( iEdg ` G ) |
| 3 |
|
p1evtxdeq.f |
|- ( ph -> Fun I ) |
| 4 |
|
p1evtxdeq.fv |
|- ( ph -> ( Vtx ` F ) = V ) |
| 5 |
|
p1evtxdeq.fi |
|- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) ) |
| 6 |
|
p1evtxdeq.k |
|- ( ph -> K e. X ) |
| 7 |
|
p1evtxdeq.d |
|- ( ph -> K e/ dom I ) |
| 8 |
|
p1evtxdeq.u |
|- ( ph -> U e. V ) |
| 9 |
|
p1evtxdeq.e |
|- ( ph -> E e. Y ) |
| 10 |
|
p1evtxdeq.n |
|- ( ph -> U e/ E ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
p1evtxdeqlem |
|- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) ) |
| 12 |
1
|
fvexi |
|- V e. _V |
| 13 |
|
snex |
|- { <. K , E >. } e. _V |
| 14 |
12 13
|
pm3.2i |
|- ( V e. _V /\ { <. K , E >. } e. _V ) |
| 15 |
|
opiedgfv |
|- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } ) |
| 16 |
14 15
|
mp1i |
|- ( ph -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } ) |
| 17 |
|
opvtxfv |
|- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
| 18 |
14 17
|
mp1i |
|- ( ph -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
| 19 |
16 18 6 8 9 10
|
1hevtxdg0 |
|- ( ph -> ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) = 0 ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) = ( ( ( VtxDeg ` G ) ` U ) +e 0 ) ) |
| 21 |
1
|
vtxdgelxnn0 |
|- ( U e. V -> ( ( VtxDeg ` G ) ` U ) e. NN0* ) |
| 22 |
|
xnn0xr |
|- ( ( ( VtxDeg ` G ) ` U ) e. NN0* -> ( ( VtxDeg ` G ) ` U ) e. RR* ) |
| 23 |
8 21 22
|
3syl |
|- ( ph -> ( ( VtxDeg ` G ) ` U ) e. RR* ) |
| 24 |
23
|
xaddridd |
|- ( ph -> ( ( ( VtxDeg ` G ) ` U ) +e 0 ) = ( ( VtxDeg ` G ) ` U ) ) |
| 25 |
11 20 24
|
3eqtrd |
|- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) ) |