Metamath Proof Explorer


Theorem p1evtxdeqlem

Description: Lemma for p1evtxdeq and p1evtxdp1 . (Contributed by AV, 3-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v
|- V = ( Vtx ` G )
p1evtxdeq.i
|- I = ( iEdg ` G )
p1evtxdeq.f
|- ( ph -> Fun I )
p1evtxdeq.fv
|- ( ph -> ( Vtx ` F ) = V )
p1evtxdeq.fi
|- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) )
p1evtxdeq.k
|- ( ph -> K e. X )
p1evtxdeq.d
|- ( ph -> K e/ dom I )
p1evtxdeq.u
|- ( ph -> U e. V )
p1evtxdeq.e
|- ( ph -> E e. Y )
Assertion p1evtxdeqlem
|- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) )

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v
 |-  V = ( Vtx ` G )
2 p1evtxdeq.i
 |-  I = ( iEdg ` G )
3 p1evtxdeq.f
 |-  ( ph -> Fun I )
4 p1evtxdeq.fv
 |-  ( ph -> ( Vtx ` F ) = V )
5 p1evtxdeq.fi
 |-  ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) )
6 p1evtxdeq.k
 |-  ( ph -> K e. X )
7 p1evtxdeq.d
 |-  ( ph -> K e/ dom I )
8 p1evtxdeq.u
 |-  ( ph -> U e. V )
9 p1evtxdeq.e
 |-  ( ph -> E e. Y )
10 1 fvexi
 |-  V e. _V
11 snex
 |-  { <. K , E >. } e. _V
12 10 11 pm3.2i
 |-  ( V e. _V /\ { <. K , E >. } e. _V )
13 opiedgfv
 |-  ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } )
14 13 eqcomd
 |-  ( ( V e. _V /\ { <. K , E >. } e. _V ) -> { <. K , E >. } = ( iEdg ` <. V , { <. K , E >. } >. ) )
15 12 14 ax-mp
 |-  { <. K , E >. } = ( iEdg ` <. V , { <. K , E >. } >. )
16 opvtxfv
 |-  ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( Vtx ` <. V , { <. K , E >. } >. ) = V )
17 12 16 mp1i
 |-  ( ph -> ( Vtx ` <. V , { <. K , E >. } >. ) = V )
18 dmsnopg
 |-  ( E e. Y -> dom { <. K , E >. } = { K } )
19 9 18 syl
 |-  ( ph -> dom { <. K , E >. } = { K } )
20 19 ineq2d
 |-  ( ph -> ( dom I i^i dom { <. K , E >. } ) = ( dom I i^i { K } ) )
21 df-nel
 |-  ( K e/ dom I <-> -. K e. dom I )
22 7 21 sylib
 |-  ( ph -> -. K e. dom I )
23 disjsn
 |-  ( ( dom I i^i { K } ) = (/) <-> -. K e. dom I )
24 22 23 sylibr
 |-  ( ph -> ( dom I i^i { K } ) = (/) )
25 20 24 eqtrd
 |-  ( ph -> ( dom I i^i dom { <. K , E >. } ) = (/) )
26 funsng
 |-  ( ( K e. X /\ E e. Y ) -> Fun { <. K , E >. } )
27 6 9 26 syl2anc
 |-  ( ph -> Fun { <. K , E >. } )
28 2 15 1 17 4 25 3 27 8 5 vtxdun
 |-  ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) )