Step |
Hyp |
Ref |
Expression |
1 |
|
p1evtxdeq.v |
|- V = ( Vtx ` G ) |
2 |
|
p1evtxdeq.i |
|- I = ( iEdg ` G ) |
3 |
|
p1evtxdeq.f |
|- ( ph -> Fun I ) |
4 |
|
p1evtxdeq.fv |
|- ( ph -> ( Vtx ` F ) = V ) |
5 |
|
p1evtxdeq.fi |
|- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) ) |
6 |
|
p1evtxdeq.k |
|- ( ph -> K e. X ) |
7 |
|
p1evtxdeq.d |
|- ( ph -> K e/ dom I ) |
8 |
|
p1evtxdeq.u |
|- ( ph -> U e. V ) |
9 |
|
p1evtxdeq.e |
|- ( ph -> E e. Y ) |
10 |
1
|
fvexi |
|- V e. _V |
11 |
|
snex |
|- { <. K , E >. } e. _V |
12 |
10 11
|
pm3.2i |
|- ( V e. _V /\ { <. K , E >. } e. _V ) |
13 |
|
opiedgfv |
|- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } ) |
14 |
13
|
eqcomd |
|- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> { <. K , E >. } = ( iEdg ` <. V , { <. K , E >. } >. ) ) |
15 |
12 14
|
ax-mp |
|- { <. K , E >. } = ( iEdg ` <. V , { <. K , E >. } >. ) |
16 |
|
opvtxfv |
|- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
17 |
12 16
|
mp1i |
|- ( ph -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
18 |
|
dmsnopg |
|- ( E e. Y -> dom { <. K , E >. } = { K } ) |
19 |
9 18
|
syl |
|- ( ph -> dom { <. K , E >. } = { K } ) |
20 |
19
|
ineq2d |
|- ( ph -> ( dom I i^i dom { <. K , E >. } ) = ( dom I i^i { K } ) ) |
21 |
|
df-nel |
|- ( K e/ dom I <-> -. K e. dom I ) |
22 |
7 21
|
sylib |
|- ( ph -> -. K e. dom I ) |
23 |
|
disjsn |
|- ( ( dom I i^i { K } ) = (/) <-> -. K e. dom I ) |
24 |
22 23
|
sylibr |
|- ( ph -> ( dom I i^i { K } ) = (/) ) |
25 |
20 24
|
eqtrd |
|- ( ph -> ( dom I i^i dom { <. K , E >. } ) = (/) ) |
26 |
|
funsng |
|- ( ( K e. X /\ E e. Y ) -> Fun { <. K , E >. } ) |
27 |
6 9 26
|
syl2anc |
|- ( ph -> Fun { <. K , E >. } ) |
28 |
2 15 1 17 4 25 3 27 8 5
|
vtxdun |
|- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) ) |