Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszrcl |
|- ( M || A -> ( M e. ZZ /\ A e. ZZ ) ) |
2 |
|
0red |
|- ( ( M e. ZZ /\ 1 < M ) -> 0 e. RR ) |
3 |
|
1red |
|- ( ( M e. ZZ /\ 1 < M ) -> 1 e. RR ) |
4 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
5 |
4
|
adantr |
|- ( ( M e. ZZ /\ 1 < M ) -> M e. RR ) |
6 |
2 3 5
|
3jca |
|- ( ( M e. ZZ /\ 1 < M ) -> ( 0 e. RR /\ 1 e. RR /\ M e. RR ) ) |
7 |
|
0lt1 |
|- 0 < 1 |
8 |
7
|
a1i |
|- ( M e. ZZ -> 0 < 1 ) |
9 |
8
|
anim1i |
|- ( ( M e. ZZ /\ 1 < M ) -> ( 0 < 1 /\ 1 < M ) ) |
10 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ M e. RR ) -> ( ( 0 < 1 /\ 1 < M ) -> 0 < M ) ) |
11 |
6 9 10
|
sylc |
|- ( ( M e. ZZ /\ 1 < M ) -> 0 < M ) |
12 |
11
|
ex |
|- ( M e. ZZ -> ( 1 < M -> 0 < M ) ) |
13 |
|
elnnz |
|- ( M e. NN <-> ( M e. ZZ /\ 0 < M ) ) |
14 |
13
|
simplbi2 |
|- ( M e. ZZ -> ( 0 < M -> M e. NN ) ) |
15 |
12 14
|
syld |
|- ( M e. ZZ -> ( 1 < M -> M e. NN ) ) |
16 |
15
|
adantr |
|- ( ( M e. ZZ /\ A e. ZZ ) -> ( 1 < M -> M e. NN ) ) |
17 |
16
|
imp |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> M e. NN ) |
18 |
|
dvdsmod0 |
|- ( ( M e. NN /\ M || A ) -> ( A mod M ) = 0 ) |
19 |
17 18
|
sylan |
|- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ M || A ) -> ( A mod M ) = 0 ) |
20 |
19
|
ex |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( M || A -> ( A mod M ) = 0 ) ) |
21 |
|
oveq1 |
|- ( ( A mod M ) = 0 -> ( ( A mod M ) + 1 ) = ( 0 + 1 ) ) |
22 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
23 |
21 22
|
eqtrdi |
|- ( ( A mod M ) = 0 -> ( ( A mod M ) + 1 ) = 1 ) |
24 |
23
|
oveq1d |
|- ( ( A mod M ) = 0 -> ( ( ( A mod M ) + 1 ) mod M ) = ( 1 mod M ) ) |
25 |
24
|
adantl |
|- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( 1 mod M ) ) |
26 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
27 |
26
|
adantl |
|- ( ( M e. ZZ /\ A e. ZZ ) -> A e. RR ) |
28 |
27
|
adantr |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> A e. RR ) |
29 |
|
1red |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> 1 e. RR ) |
30 |
17
|
nnrpd |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> M e. RR+ ) |
31 |
28 29 30
|
3jca |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) |
32 |
31
|
adantr |
|- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) |
33 |
|
modaddmod |
|- ( ( A e. RR /\ 1 e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
34 |
32 33
|
syl |
|- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
35 |
4
|
adantr |
|- ( ( M e. ZZ /\ A e. ZZ ) -> M e. RR ) |
36 |
|
1mod |
|- ( ( M e. RR /\ 1 < M ) -> ( 1 mod M ) = 1 ) |
37 |
35 36
|
sylan |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( 1 mod M ) = 1 ) |
38 |
37
|
adantr |
|- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( 1 mod M ) = 1 ) |
39 |
25 34 38
|
3eqtr3d |
|- ( ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) /\ ( A mod M ) = 0 ) -> ( ( A + 1 ) mod M ) = 1 ) |
40 |
39
|
ex |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( ( A mod M ) = 0 -> ( ( A + 1 ) mod M ) = 1 ) ) |
41 |
20 40
|
syld |
|- ( ( ( M e. ZZ /\ A e. ZZ ) /\ 1 < M ) -> ( M || A -> ( ( A + 1 ) mod M ) = 1 ) ) |
42 |
41
|
ex |
|- ( ( M e. ZZ /\ A e. ZZ ) -> ( 1 < M -> ( M || A -> ( ( A + 1 ) mod M ) = 1 ) ) ) |
43 |
42
|
com23 |
|- ( ( M e. ZZ /\ A e. ZZ ) -> ( M || A -> ( 1 < M -> ( ( A + 1 ) mod M ) = 1 ) ) ) |
44 |
1 43
|
mpcom |
|- ( M || A -> ( 1 < M -> ( ( A + 1 ) mod M ) = 1 ) ) |
45 |
44
|
imp |
|- ( ( M || A /\ 1 < M ) -> ( ( A + 1 ) mod M ) = 1 ) |