Metamath Proof Explorer


Theorem p1val

Description: Value of poset zero. (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses p1val.b
|- B = ( Base ` K )
p1val.u
|- U = ( lub ` K )
p1val.t
|- .1. = ( 1. ` K )
Assertion p1val
|- ( K e. V -> .1. = ( U ` B ) )

Proof

Step Hyp Ref Expression
1 p1val.b
 |-  B = ( Base ` K )
2 p1val.u
 |-  U = ( lub ` K )
3 p1val.t
 |-  .1. = ( 1. ` K )
4 elex
 |-  ( K e. V -> K e. _V )
5 fveq2
 |-  ( k = K -> ( lub ` k ) = ( lub ` K ) )
6 5 2 eqtr4di
 |-  ( k = K -> ( lub ` k ) = U )
7 fveq2
 |-  ( k = K -> ( Base ` k ) = ( Base ` K ) )
8 7 1 eqtr4di
 |-  ( k = K -> ( Base ` k ) = B )
9 6 8 fveq12d
 |-  ( k = K -> ( ( lub ` k ) ` ( Base ` k ) ) = ( U ` B ) )
10 df-p1
 |-  1. = ( k e. _V |-> ( ( lub ` k ) ` ( Base ` k ) ) )
11 fvex
 |-  ( U ` B ) e. _V
12 9 10 11 fvmpt
 |-  ( K e. _V -> ( 1. ` K ) = ( U ` B ) )
13 3 12 eqtrid
 |-  ( K e. _V -> .1. = ( U ` B ) )
14 4 13 syl
 |-  ( K e. V -> .1. = ( U ` B ) )