Step |
Hyp |
Ref |
Expression |
1 |
|
paddass.a |
|- A = ( Atoms ` K ) |
2 |
|
paddass.p |
|- .+ = ( +P ` K ) |
3 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
4 |
3
|
adantr |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. Lat ) |
5 |
|
simpr1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ A ) |
6 |
|
simpr2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
7 |
1 2
|
paddcom |
|- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( Y .+ X ) ) |
8 |
4 5 6 7
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
9 |
8
|
oveq1d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( Y .+ X ) .+ Z ) ) |
10 |
1 2
|
paddass |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
11 |
|
simpl |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. HL ) |
12 |
|
simpr3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
13 |
1 2
|
paddass |
|- ( ( K e. HL /\ ( Y C_ A /\ X C_ A /\ Z C_ A ) ) -> ( ( Y .+ X ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
14 |
11 6 5 12 13
|
syl13anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y .+ X ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
15 |
9 10 14
|
3eqtr3d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |