Step |
Hyp |
Ref |
Expression |
1 |
|
paddass.a |
|- A = ( Atoms ` K ) |
2 |
|
paddass.p |
|- .+ = ( +P ` K ) |
3 |
|
simpl |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. HL ) |
4 |
|
simpr3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
5 |
|
simpr2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
6 |
|
simpr1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ A ) |
7 |
1 2
|
paddasslem18 |
|- ( ( K e. HL /\ ( Z C_ A /\ Y C_ A /\ X C_ A ) ) -> ( Z .+ ( Y .+ X ) ) C_ ( ( Z .+ Y ) .+ X ) ) |
8 |
3 4 5 6 7
|
syl13anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Z .+ ( Y .+ X ) ) C_ ( ( Z .+ Y ) .+ X ) ) |
9 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
10 |
1 2
|
paddcom |
|- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( Y .+ X ) ) |
11 |
9 10
|
syl3an1 |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) = ( Y .+ X ) ) |
12 |
11
|
3adant3r3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) |
13 |
12
|
oveq1d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( Y .+ X ) .+ Z ) ) |
14 |
1 2
|
paddssat |
|- ( ( K e. HL /\ Y C_ A /\ X C_ A ) -> ( Y .+ X ) C_ A ) |
15 |
3 5 6 14
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ X ) C_ A ) |
16 |
1 2
|
paddcom |
|- ( ( K e. Lat /\ ( Y .+ X ) C_ A /\ Z C_ A ) -> ( ( Y .+ X ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
17 |
9 16
|
syl3an1 |
|- ( ( K e. HL /\ ( Y .+ X ) C_ A /\ Z C_ A ) -> ( ( Y .+ X ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
18 |
3 15 4 17
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y .+ X ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
19 |
13 18
|
eqtrd |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( Z .+ ( Y .+ X ) ) ) |
20 |
1 2
|
paddcom |
|- ( ( K e. Lat /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
21 |
9 20
|
syl3an1 |
|- ( ( K e. HL /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
22 |
21
|
3adant3r1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
23 |
22
|
oveq2d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( X .+ ( Z .+ Y ) ) ) |
24 |
1 2
|
paddssat |
|- ( ( K e. HL /\ Z C_ A /\ Y C_ A ) -> ( Z .+ Y ) C_ A ) |
25 |
3 4 5 24
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Z .+ Y ) C_ A ) |
26 |
1 2
|
paddcom |
|- ( ( K e. Lat /\ X C_ A /\ ( Z .+ Y ) C_ A ) -> ( X .+ ( Z .+ Y ) ) = ( ( Z .+ Y ) .+ X ) ) |
27 |
9 26
|
syl3an1 |
|- ( ( K e. HL /\ X C_ A /\ ( Z .+ Y ) C_ A ) -> ( X .+ ( Z .+ Y ) ) = ( ( Z .+ Y ) .+ X ) ) |
28 |
3 6 25 27
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Z .+ Y ) ) = ( ( Z .+ Y ) .+ X ) ) |
29 |
23 28
|
eqtrd |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) = ( ( Z .+ Y ) .+ X ) ) |
30 |
8 19 29
|
3sstr4d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) C_ ( X .+ ( Y .+ Z ) ) ) |
31 |
1 2
|
paddasslem18 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
32 |
30 31
|
eqssd |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |