Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paddasslem.l | |- .<_ = ( le ` K ) |
|
paddasslem.j | |- .\/ = ( join ` K ) |
||
paddasslem.a | |- A = ( Atoms ` K ) |
||
Assertion | paddasslem1 | |- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddasslem.l | |- .<_ = ( le ` K ) |
|
2 | paddasslem.j | |- .\/ = ( join ` K ) |
|
3 | paddasslem.a | |- A = ( Atoms ` K ) |
|
4 | 1 2 3 | hlatexch2 | |- ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) -> ( x .<_ ( r .\/ y ) -> r .<_ ( x .\/ y ) ) ) |
5 | 4 | con3dimp | |- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) ) |