Metamath Proof Explorer


Theorem paddasslem1

Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l
|- .<_ = ( le ` K )
paddasslem.j
|- .\/ = ( join ` K )
paddasslem.a
|- A = ( Atoms ` K )
Assertion paddasslem1
|- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) )

Proof

Step Hyp Ref Expression
1 paddasslem.l
 |-  .<_ = ( le ` K )
2 paddasslem.j
 |-  .\/ = ( join ` K )
3 paddasslem.a
 |-  A = ( Atoms ` K )
4 1 2 3 hlatexch2
 |-  ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) -> ( x .<_ ( r .\/ y ) -> r .<_ ( x .\/ y ) ) )
5 4 con3dimp
 |-  ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) )