Metamath Proof Explorer


Theorem paddasslem11

Description: Lemma for paddass . The case when p = z . (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses paddasslem.l
|- .<_ = ( le ` K )
paddasslem.j
|- .\/ = ( join ` K )
paddasslem.a
|- A = ( Atoms ` K )
paddasslem.p
|- .+ = ( +P ` K )
Assertion paddasslem11
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. ( ( X .+ Y ) .+ Z ) )

Proof

Step Hyp Ref Expression
1 paddasslem.l
 |-  .<_ = ( le ` K )
2 paddasslem.j
 |-  .\/ = ( join ` K )
3 paddasslem.a
 |-  A = ( Atoms ` K )
4 paddasslem.p
 |-  .+ = ( +P ` K )
5 simplll
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> K e. HL )
6 simplr3
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Z C_ A )
7 simplr1
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> X C_ A )
8 simplr2
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Y C_ A )
9 3 4 paddssat
 |-  ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A )
10 5 7 8 9 syl3anc
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> ( X .+ Y ) C_ A )
11 3 4 sspadd2
 |-  ( ( K e. HL /\ Z C_ A /\ ( X .+ Y ) C_ A ) -> Z C_ ( ( X .+ Y ) .+ Z ) )
12 5 6 10 11 syl3anc
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Z C_ ( ( X .+ Y ) .+ Z ) )
13 simpllr
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p = z )
14 simpr
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> z e. Z )
15 13 14 eqeltrd
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. Z )
16 12 15 sseldd
 |-  ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. ( ( X .+ Y ) .+ Z ) )