Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
|- .<_ = ( le ` K ) |
2 |
|
paddasslem.j |
|- .\/ = ( join ` K ) |
3 |
|
paddasslem.a |
|- A = ( Atoms ` K ) |
4 |
|
paddasslem.p |
|- .+ = ( +P ` K ) |
5 |
|
simplll |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> K e. HL ) |
6 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Z C_ A ) |
7 |
|
simplr1 |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> X C_ A ) |
8 |
|
simplr2 |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Y C_ A ) |
9 |
3 4
|
paddssat |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
10 |
5 7 8 9
|
syl3anc |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> ( X .+ Y ) C_ A ) |
11 |
3 4
|
sspadd2 |
|- ( ( K e. HL /\ Z C_ A /\ ( X .+ Y ) C_ A ) -> Z C_ ( ( X .+ Y ) .+ Z ) ) |
12 |
5 6 10 11
|
syl3anc |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Z C_ ( ( X .+ Y ) .+ Z ) ) |
13 |
|
simpllr |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p = z ) |
14 |
|
simpr |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> z e. Z ) |
15 |
13 14
|
eqeltrd |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. Z ) |
16 |
12 15
|
sseldd |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. ( ( X .+ Y ) .+ Z ) ) |