Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
|- .<_ = ( le ` K ) |
2 |
|
paddasslem.j |
|- .\/ = ( join ` K ) |
3 |
|
paddasslem.a |
|- A = ( Atoms ` K ) |
4 |
|
paddasslem.p |
|- .+ = ( +P ` K ) |
5 |
|
simpr2r |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> r e. ( Y .+ Z ) ) |
6 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> K e. Lat ) |
8 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> Y C_ A ) |
9 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> Z C_ A ) |
10 |
|
simpl3 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( Y =/= (/) /\ Z =/= (/) ) ) |
11 |
1 2 3 4
|
elpaddn0 |
|- ( ( ( K e. Lat /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( r e. ( Y .+ Z ) <-> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) ) |
12 |
7 8 9 10 11
|
syl31anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. ( Y .+ Z ) <-> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) ) |
13 |
5 12
|
mpbid |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) |
14 |
|
simp11 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> K e. HL ) |
15 |
|
simp12 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( X C_ A /\ Y C_ A /\ Z C_ A ) ) |
16 |
|
simp21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p e. A ) |
17 |
|
simp31 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> r e. A ) |
18 |
16 17
|
jca |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( p e. A /\ r e. A ) ) |
19 |
|
simp22l |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> x e. X ) |
20 |
|
simp32l |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> y e. Y ) |
21 |
|
simp32r |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> z e. Z ) |
22 |
19 20 21
|
3jca |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( x e. X /\ y e. Y /\ z e. Z ) ) |
23 |
|
simp23 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p .<_ ( x .\/ r ) ) |
24 |
|
simp33 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> r .<_ ( y .\/ z ) ) |
25 |
23 24
|
jca |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) |
26 |
1 2 3 4
|
paddasslem14 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ r e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
27 |
14 15 18 22 25 26
|
syl32anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |
28 |
27
|
3expia |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
29 |
28
|
3expd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. A -> ( ( y e. Y /\ z e. Z ) -> ( r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) ) |
30 |
29
|
imp |
|- ( ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) /\ r e. A ) -> ( ( y e. Y /\ z e. Z ) -> ( r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) |
31 |
30
|
rexlimdvv |
|- ( ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) /\ r e. A ) -> ( E. y e. Y E. z e. Z r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
32 |
31
|
expimpd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) |
33 |
13 32
|
mpd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) |