| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddasslem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							paddasslem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							paddasslem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							paddasslem.p | 
							 |-  .+ = ( +P ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr2r | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> r e. ( Y .+ Z ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> K e. HL )  | 
						
						
							| 7 | 
							
								6
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> K e. Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> Y C_ A )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl23 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> Z C_ A )  | 
						
						
							| 10 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( Y =/= (/) /\ Z =/= (/) ) )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							elpaddn0 | 
							 |-  ( ( ( K e. Lat /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( r e. ( Y .+ Z ) <-> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) )  | 
						
						
							| 12 | 
							
								7 8 9 10 11
							 | 
							syl31anc | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. ( Y .+ Z ) <-> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> K e. HL )  | 
						
						
							| 15 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( X C_ A /\ Y C_ A /\ Z C_ A ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p e. A )  | 
						
						
							| 17 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> r e. A )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							jca | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( p e. A /\ r e. A ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> x e. X )  | 
						
						
							| 20 | 
							
								
							 | 
							simp32l | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> y e. Y )  | 
						
						
							| 21 | 
							
								
							 | 
							simp32r | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> z e. Z )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							3jca | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( x e. X /\ y e. Y /\ z e. Z ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p .<_ ( x .\/ r ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp33 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> r .<_ ( y .\/ z ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							jca | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) )  | 
						
						
							| 26 | 
							
								1 2 3 4
							 | 
							paddasslem14 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ r e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ ( p .<_ ( x .\/ r ) /\ r .<_ ( y .\/ z ) ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )  | 
						
						
							| 27 | 
							
								14 15 18 22 25 26
							 | 
							syl32anc | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) /\ ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							3expia | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( ( r e. A /\ ( y e. Y /\ z e. Z ) /\ r .<_ ( y .\/ z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							3expd | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( r e. A -> ( ( y e. Y /\ z e. Z ) -> ( r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							imp | 
							 |-  ( ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) /\ r e. A ) -> ( ( y e. Y /\ z e. Z ) -> ( r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							rexlimdvv | 
							 |-  ( ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) /\ r e. A ) -> ( E. y e. Y E. z e. Z r .<_ ( y .\/ z ) -> p e. ( ( X .+ Y ) .+ Z ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							expimpd | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> ( ( r e. A /\ E. y e. Y E. z e. Z r .<_ ( y .\/ z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) )  | 
						
						
							| 33 | 
							
								13 32
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )  |