| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddasslem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							paddasslem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							paddasslem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							paddasslem.p | 
							 |-  .+ = ( +P ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 6 | 
							
								5
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> K e. Lat )  | 
						
						
							| 7 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> X C_ A )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> K e. HL )  | 
						
						
							| 9 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> Y C_ A )  | 
						
						
							| 10 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> Z C_ A )  | 
						
						
							| 11 | 
							
								3 4
							 | 
							paddssat | 
							 |-  ( ( K e. HL /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) C_ A )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( Y .+ Z ) C_ A )  | 
						
						
							| 13 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) )  | 
						
						
							| 14 | 
							
								1 2 3 4
							 | 
							elpaddn0 | 
							 |-  ( ( ( K e. Lat /\ X C_ A /\ ( Y .+ Z ) C_ A ) /\ ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) ) -> ( p e. ( X .+ ( Y .+ Z ) ) <-> ( p e. A /\ E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) ) ) )  | 
						
						
							| 15 | 
							
								6 7 12 13 14
							 | 
							syl31anc | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( p e. ( X .+ ( Y .+ Z ) ) <-> ( p e. A /\ E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( Y =/= (/) /\ Z =/= (/) ) )  | 
						
						
							| 17 | 
							
								1 2 3 4
							 | 
							paddasslem15 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl3anl3 | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) /\ ( p e. A /\ ( x e. X /\ r e. ( Y .+ Z ) ) /\ p .<_ ( x .\/ r ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3exp2 | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( p e. A -> ( ( x e. X /\ r e. ( Y .+ Z ) ) -> ( p .<_ ( x .\/ r ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) /\ p e. A ) -> ( ( x e. X /\ r e. ( Y .+ Z ) ) -> ( p .<_ ( x .\/ r ) -> p e. ( ( X .+ Y ) .+ Z ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							rexlimdvv | 
							 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) /\ p e. A ) -> ( E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) -> p e. ( ( X .+ Y ) .+ Z ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							expimpd | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( ( p e. A /\ E. x e. X E. r e. ( Y .+ Z ) p .<_ ( x .\/ r ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) )  | 
						
						
							| 23 | 
							
								15 22
							 | 
							sylbid | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( p e. ( X .+ ( Y .+ Z ) ) -> p e. ( ( X .+ Y ) .+ Z ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ssrdv | 
							 |-  ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) )  |