Step |
Hyp |
Ref |
Expression |
1 |
|
paddass.a |
|- A = ( Atoms ` K ) |
2 |
|
paddass.p |
|- .+ = ( +P ` K ) |
3 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
4 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
5 |
3 4 1 2
|
paddasslem16 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
6 |
5
|
3expa |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
7 |
1 2
|
paddasslem17 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
8 |
7
|
3expa |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
9 |
6 8
|
pm2.61dan |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |