Description: Lemma for paddass . Restate projective space axiom ps-2 . (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | |- .<_ = ( le ` K )  | 
					|
| paddasslem.j | |- .\/ = ( join ` K )  | 
					||
| paddasslem.a | |- A = ( Atoms ` K )  | 
					||
| Assertion | paddasslem3 | |- ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ ( p e. A /\ z e. A ) ) -> ( ( ( -. x .<_ ( r .\/ y ) /\ p =/= z ) /\ ( p .<_ ( x .\/ r ) /\ z .<_ ( r .\/ y ) ) ) -> E. s e. A ( s .<_ ( x .\/ y ) /\ s .<_ ( p .\/ z ) ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | paddasslem.l | |- .<_ = ( le ` K )  | 
						|
| 2 | paddasslem.j | |- .\/ = ( join ` K )  | 
						|
| 3 | paddasslem.a | |- A = ( Atoms ` K )  | 
						|
| 4 | 1 2 3 | ps-2 | |- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ ( p e. A /\ z e. A ) ) /\ ( ( -. x .<_ ( r .\/ y ) /\ p =/= z ) /\ ( p .<_ ( x .\/ r ) /\ z .<_ ( r .\/ y ) ) ) ) -> E. s e. A ( s .<_ ( x .\/ y ) /\ s .<_ ( p .\/ z ) ) )  | 
						
| 5 | 4 | ex | |- ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ ( p e. A /\ z e. A ) ) -> ( ( ( -. x .<_ ( r .\/ y ) /\ p =/= z ) /\ ( p .<_ ( x .\/ r ) /\ z .<_ ( r .\/ y ) ) ) -> E. s e. A ( s .<_ ( x .\/ y ) /\ s .<_ ( p .\/ z ) ) ) )  |