Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
|- .<_ = ( le ` K ) |
2 |
|
paddasslem.j |
|- .\/ = ( join ` K ) |
3 |
|
paddasslem.a |
|- A = ( Atoms ` K ) |
4 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> K e. HL ) |
5 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> p e. A ) |
6 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> s e. A ) |
7 |
5 6
|
jca |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> ( p e. A /\ s e. A ) ) |
8 |
|
simpl33 |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> z e. A ) |
9 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> r e. A ) |
10 |
|
simpl3 |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> ( x e. A /\ y e. A /\ z e. A ) ) |
11 |
|
simprl |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) ) |
12 |
1 2 3
|
paddasslem5 |
|- ( ( ( K e. HL /\ r e. A /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) ) -> s =/= z ) |
13 |
4 9 10 11 12
|
syl31anc |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> s =/= z ) |
14 |
|
simprr |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> s .<_ ( p .\/ z ) ) |
15 |
1 2 3
|
paddasslem6 |
|- ( ( ( K e. HL /\ ( p e. A /\ s e. A ) /\ z e. A ) /\ ( s =/= z /\ s .<_ ( p .\/ z ) ) ) -> p .<_ ( s .\/ z ) ) |
16 |
4 7 8 13 14 15
|
syl32anc |
|- ( ( ( K e. HL /\ ( p e. A /\ r e. A /\ s e. A ) /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ ( ( -. r .<_ ( x .\/ y ) /\ r .<_ ( y .\/ z ) /\ s .<_ ( x .\/ y ) ) /\ s .<_ ( p .\/ z ) ) ) -> p .<_ ( s .\/ z ) ) |