Metamath Proof Explorer


Theorem paddasslem8

Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l
|- .<_ = ( le ` K )
paddasslem.j
|- .\/ = ( join ` K )
paddasslem.a
|- A = ( Atoms ` K )
paddasslem.p
|- .+ = ( +P ` K )
Assertion paddasslem8
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )

Proof

Step Hyp Ref Expression
1 paddasslem.l
 |-  .<_ = ( le ` K )
2 paddasslem.j
 |-  .\/ = ( join ` K )
3 paddasslem.a
 |-  A = ( Atoms ` K )
4 paddasslem.p
 |-  .+ = ( +P ` K )
5 simpl1
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> K e. HL )
6 5 hllatd
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> K e. Lat )
7 simpl21
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> X C_ A )
8 simpl22
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> Y C_ A )
9 3 4 paddssat
 |-  ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A )
10 5 7 8 9 syl3anc
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> ( X .+ Y ) C_ A )
11 simpl23
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> Z C_ A )
12 simpr11
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> x e. X )
13 simpr12
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> y e. Y )
14 simpl3r
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> s e. A )
15 simpr2
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> s .<_ ( x .\/ y ) )
16 1 2 3 4 elpaddri
 |-  ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( x e. X /\ y e. Y ) /\ ( s e. A /\ s .<_ ( x .\/ y ) ) ) -> s e. ( X .+ Y ) )
17 6 7 8 12 13 14 15 16 syl322anc
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> s e. ( X .+ Y ) )
18 simpr13
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> z e. Z )
19 simpl3l
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> p e. A )
20 simpr3
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> p .<_ ( s .\/ z ) )
21 1 2 3 4 elpaddri
 |-  ( ( ( K e. Lat /\ ( X .+ Y ) C_ A /\ Z C_ A ) /\ ( s e. ( X .+ Y ) /\ z e. Z ) /\ ( p e. A /\ p .<_ ( s .\/ z ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )
22 6 10 11 17 18 19 20 21 syl322anc
 |-  ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ ( p e. A /\ s e. A ) ) /\ ( ( x e. X /\ y e. Y /\ z e. Z ) /\ s .<_ ( x .\/ y ) /\ p .<_ ( s .\/ z ) ) ) -> p e. ( ( X .+ Y ) .+ Z ) )