Metamath Proof Explorer


Theorem paddatclN

Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddatcl.a
|- A = ( Atoms ` K )
paddatcl.p
|- .+ = ( +P ` K )
paddatcl.c
|- C = ( PSubCl ` K )
Assertion paddatclN
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( X .+ { Q } ) e. C )

Proof

Step Hyp Ref Expression
1 paddatcl.a
 |-  A = ( Atoms ` K )
2 paddatcl.p
 |-  .+ = ( +P ` K )
3 paddatcl.c
 |-  C = ( PSubCl ` K )
4 hlclat
 |-  ( K e. HL -> K e. CLat )
5 4 3ad2ant1
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> K e. CLat )
6 1 3 psubclssatN
 |-  ( ( K e. HL /\ X e. C ) -> X C_ A )
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 7 1 atssbase
 |-  A C_ ( Base ` K )
9 6 8 sstrdi
 |-  ( ( K e. HL /\ X e. C ) -> X C_ ( Base ` K ) )
10 9 3adant3
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> X C_ ( Base ` K ) )
11 eqid
 |-  ( lub ` K ) = ( lub ` K )
12 7 11 clatlubcl
 |-  ( ( K e. CLat /\ X C_ ( Base ` K ) ) -> ( ( lub ` K ) ` X ) e. ( Base ` K ) )
13 5 10 12 syl2anc
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( lub ` K ) ` X ) e. ( Base ` K ) )
14 eqid
 |-  ( join ` K ) = ( join ` K )
15 eqid
 |-  ( pmap ` K ) = ( pmap ` K )
16 7 14 1 15 2 pmapjat1
 |-  ( ( K e. HL /\ ( ( lub ` K ) ` X ) e. ( Base ` K ) /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) = ( ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) .+ ( ( pmap ` K ) ` Q ) ) )
17 13 16 syld3an2
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) = ( ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) .+ ( ( pmap ` K ) ` Q ) ) )
18 11 15 3 pmapidclN
 |-  ( ( K e. HL /\ X e. C ) -> ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) = X )
19 18 3adant3
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) = X )
20 1 15 pmapat
 |-  ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` Q ) = { Q } )
21 20 3adant2
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` Q ) = { Q } )
22 19 21 oveq12d
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) .+ ( ( pmap ` K ) ` Q ) ) = ( X .+ { Q } ) )
23 17 22 eqtr2d
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( X .+ { Q } ) = ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) )
24 simp1
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> K e. HL )
25 hllat
 |-  ( K e. HL -> K e. Lat )
26 25 3ad2ant1
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> K e. Lat )
27 7 1 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
28 27 3ad2ant3
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> Q e. ( Base ` K ) )
29 7 14 latjcl
 |-  ( ( K e. Lat /\ ( ( lub ` K ) ` X ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) e. ( Base ` K ) )
30 26 13 28 29 syl3anc
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) e. ( Base ` K ) )
31 7 15 3 pmapsubclN
 |-  ( ( K e. HL /\ ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) e. C )
32 24 30 31 syl2anc
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) e. C )
33 23 32 eqeltrd
 |-  ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( X .+ { Q } ) e. C )