Step |
Hyp |
Ref |
Expression |
1 |
|
paddss.a |
|- A = ( Atoms ` K ) |
2 |
|
paddss.s |
|- S = ( PSubSp ` K ) |
3 |
|
paddss.p |
|- .+ = ( +P ` K ) |
4 |
|
simpl |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> K e. B ) |
5 |
|
simpr1 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> X C_ A ) |
6 |
|
simpr2 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Y C_ A ) |
7 |
1 2
|
psubssat |
|- ( ( K e. B /\ Z e. S ) -> Z C_ A ) |
8 |
7
|
3ad2antr3 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Z C_ A ) |
9 |
1 3
|
paddssw1 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
10 |
4 5 6 8 9
|
syl13anc |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
11 |
2 3
|
paddidm |
|- ( ( K e. B /\ Z e. S ) -> ( Z .+ Z ) = Z ) |
12 |
11
|
3ad2antr3 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( Z .+ Z ) = Z ) |
13 |
12
|
sseq2d |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X .+ Y ) C_ ( Z .+ Z ) <-> ( X .+ Y ) C_ Z ) ) |
14 |
10 13
|
sylibd |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ Z ) ) |
15 |
1 3
|
paddssw2 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
16 |
4 5 6 8 15
|
syl13anc |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
17 |
14 16
|
impbid |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) <-> ( X .+ Y ) C_ Z ) ) |