| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddss.a |
|- A = ( Atoms ` K ) |
| 2 |
|
paddss.s |
|- S = ( PSubSp ` K ) |
| 3 |
|
paddss.p |
|- .+ = ( +P ` K ) |
| 4 |
|
simpl |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> K e. B ) |
| 5 |
|
simpr1 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> X C_ A ) |
| 6 |
|
simpr2 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Y C_ A ) |
| 7 |
1 2
|
psubssat |
|- ( ( K e. B /\ Z e. S ) -> Z C_ A ) |
| 8 |
7
|
3ad2antr3 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Z C_ A ) |
| 9 |
1 3
|
paddssw1 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
| 10 |
4 5 6 8 9
|
syl13anc |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
| 11 |
2 3
|
paddidm |
|- ( ( K e. B /\ Z e. S ) -> ( Z .+ Z ) = Z ) |
| 12 |
11
|
3ad2antr3 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( Z .+ Z ) = Z ) |
| 13 |
12
|
sseq2d |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X .+ Y ) C_ ( Z .+ Z ) <-> ( X .+ Y ) C_ Z ) ) |
| 14 |
10 13
|
sylibd |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ Z ) ) |
| 15 |
1 3
|
paddssw2 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
| 16 |
4 5 6 8 15
|
syl13anc |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
| 17 |
14 16
|
impbid |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) <-> ( X .+ Y ) C_ Z ) ) |