Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddssw.a | |- A = ( Atoms ` K ) |
|
| paddssw.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddssw1 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddssw.a | |- A = ( Atoms ` K ) |
|
| 2 | paddssw.p | |- .+ = ( +P ` K ) |
|
| 3 | simpl | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. B ) |
|
| 4 | simpr3 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
|
| 5 | 1 2 | paddss12 | |- ( ( K e. B /\ Z C_ A /\ Z C_ A ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
| 6 | 3 4 4 5 | syl3anc | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |