Step |
Hyp |
Ref |
Expression |
1 |
|
paddssw.a |
|- A = ( Atoms ` K ) |
2 |
|
paddssw.p |
|- .+ = ( +P ` K ) |
3 |
1 2
|
sspadd1 |
|- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> X C_ ( X .+ Y ) ) |
4 |
3
|
3adant3r3 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ ( X .+ Y ) ) |
5 |
|
sstr |
|- ( ( X C_ ( X .+ Y ) /\ ( X .+ Y ) C_ Z ) -> X C_ Z ) |
6 |
4 5
|
sylan |
|- ( ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ ( X .+ Y ) C_ Z ) -> X C_ Z ) |
7 |
6
|
ex |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> X C_ Z ) ) |
8 |
|
simpl |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. B ) |
9 |
|
simpr2 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
10 |
|
simpr1 |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ A ) |
11 |
1 2
|
sspadd2 |
|- ( ( K e. B /\ Y C_ A /\ X C_ A ) -> Y C_ ( X .+ Y ) ) |
12 |
8 9 10 11
|
syl3anc |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ ( X .+ Y ) ) |
13 |
|
sstr |
|- ( ( Y C_ ( X .+ Y ) /\ ( X .+ Y ) C_ Z ) -> Y C_ Z ) |
14 |
12 13
|
sylan |
|- ( ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ ( X .+ Y ) C_ Z ) -> Y C_ Z ) |
15 |
14
|
ex |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> Y C_ Z ) ) |
16 |
7 15
|
jcad |
|- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |