Metamath Proof Explorer


Theorem paddval0

Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a
|- A = ( Atoms ` K )
padd0.p
|- .+ = ( +P ` K )
Assertion paddval0
|- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = ( X u. Y ) )

Proof

Step Hyp Ref Expression
1 padd0.a
 |-  A = ( Atoms ` K )
2 padd0.p
 |-  .+ = ( +P ` K )
3 1 2 elpadd0
 |-  ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( q e. ( X .+ Y ) <-> ( q e. X \/ q e. Y ) ) )
4 elun
 |-  ( q e. ( X u. Y ) <-> ( q e. X \/ q e. Y ) )
5 3 4 bitr4di
 |-  ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( q e. ( X .+ Y ) <-> q e. ( X u. Y ) ) )
6 5 eqrdv
 |-  ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = ( X u. Y ) )