Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | padd0.a | |- A = ( Atoms ` K ) |
|
padd0.p | |- .+ = ( +P ` K ) |
||
Assertion | paddval0 | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = ( X u. Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | padd0.a | |- A = ( Atoms ` K ) |
|
2 | padd0.p | |- .+ = ( +P ` K ) |
|
3 | 1 2 | elpadd0 | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( q e. ( X .+ Y ) <-> ( q e. X \/ q e. Y ) ) ) |
4 | elun | |- ( q e. ( X u. Y ) <-> ( q e. X \/ q e. Y ) ) |
|
5 | 3 4 | bitr4di | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( q e. ( X .+ Y ) <-> q e. ( X u. Y ) ) ) |
6 | 5 | eqrdv | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = ( X u. Y ) ) |