Metamath Proof Explorer


Theorem paddvaln0N

Description: Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l
|- .<_ = ( le ` K )
paddfval.j
|- .\/ = ( join ` K )
paddfval.a
|- A = ( Atoms ` K )
paddfval.p
|- .+ = ( +P ` K )
Assertion paddvaln0N
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } )

Proof

Step Hyp Ref Expression
1 paddfval.l
 |-  .<_ = ( le ` K )
2 paddfval.j
 |-  .\/ = ( join ` K )
3 paddfval.a
 |-  A = ( Atoms ` K )
4 paddfval.p
 |-  .+ = ( +P ` K )
5 1 2 3 4 elpaddn0
 |-  ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( s e. ( X .+ Y ) <-> ( s e. A /\ E. q e. X E. r e. Y s .<_ ( q .\/ r ) ) ) )
6 breq1
 |-  ( p = s -> ( p .<_ ( q .\/ r ) <-> s .<_ ( q .\/ r ) ) )
7 6 2rexbidv
 |-  ( p = s -> ( E. q e. X E. r e. Y p .<_ ( q .\/ r ) <-> E. q e. X E. r e. Y s .<_ ( q .\/ r ) ) )
8 7 elrab
 |-  ( s e. { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } <-> ( s e. A /\ E. q e. X E. r e. Y s .<_ ( q .\/ r ) ) )
9 5 8 bitr4di
 |-  ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( s e. ( X .+ Y ) <-> s e. { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } ) )
10 9 eqrdv
 |-  ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } )