| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
qabsabv.a |
|- A = ( AbsVal ` Q ) |
| 3 |
|
padic.f |
|- F = ( x e. QQ |-> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) ) |
| 4 |
2
|
a1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> A = ( AbsVal ` Q ) ) |
| 5 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 6 |
5
|
a1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> QQ = ( Base ` Q ) ) |
| 7 |
|
qex |
|- QQ e. _V |
| 8 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 9 |
1 8
|
ressplusg |
|- ( QQ e. _V -> + = ( +g ` Q ) ) |
| 10 |
7 9
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> + = ( +g ` Q ) ) |
| 11 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 12 |
1 11
|
ressmulr |
|- ( QQ e. _V -> x. = ( .r ` Q ) ) |
| 13 |
7 12
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> x. = ( .r ` Q ) ) |
| 14 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
| 15 |
14
|
a1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> 0 = ( 0g ` Q ) ) |
| 16 |
1
|
qdrng |
|- Q e. DivRing |
| 17 |
|
drngring |
|- ( Q e. DivRing -> Q e. Ring ) |
| 18 |
16 17
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> Q e. Ring ) |
| 19 |
|
0red |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ x = 0 ) -> 0 e. RR ) |
| 20 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 21 |
|
simpr |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. ( 0 (,) 1 ) ) |
| 22 |
20 21
|
sselid |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. RR ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> N e. RR ) |
| 24 |
|
eliooord |
|- ( N e. ( 0 (,) 1 ) -> ( 0 < N /\ N < 1 ) ) |
| 25 |
24
|
adantl |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> ( 0 < N /\ N < 1 ) ) |
| 26 |
25
|
simpld |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> 0 < N ) |
| 27 |
22 26
|
elrpd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. RR+ ) |
| 28 |
27
|
rpne0d |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N =/= 0 ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> N =/= 0 ) |
| 30 |
|
df-ne |
|- ( x =/= 0 <-> -. x = 0 ) |
| 31 |
|
pcqcl |
|- ( ( P e. Prime /\ ( x e. QQ /\ x =/= 0 ) ) -> ( P pCnt x ) e. ZZ ) |
| 32 |
31
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( x e. QQ /\ x =/= 0 ) ) -> ( P pCnt x ) e. ZZ ) |
| 33 |
32
|
anassrs |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ x =/= 0 ) -> ( P pCnt x ) e. ZZ ) |
| 34 |
30 33
|
sylan2br |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> ( P pCnt x ) e. ZZ ) |
| 35 |
23 29 34
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) /\ -. x = 0 ) -> ( N ^ ( P pCnt x ) ) e. RR ) |
| 36 |
19 35
|
ifclda |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ x e. QQ ) -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) e. RR ) |
| 37 |
36 3
|
fmptd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> F : QQ --> RR ) |
| 38 |
|
0z |
|- 0 e. ZZ |
| 39 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
| 40 |
38 39
|
ax-mp |
|- 0 e. QQ |
| 41 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = 0 ) |
| 42 |
|
c0ex |
|- 0 e. _V |
| 43 |
41 3 42
|
fvmpt |
|- ( 0 e. QQ -> ( F ` 0 ) = 0 ) |
| 44 |
40 43
|
mp1i |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> ( F ` 0 ) = 0 ) |
| 45 |
22
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> N e. RR ) |
| 46 |
|
pcqcl |
|- ( ( P e. Prime /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
| 47 |
46
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
| 48 |
47
|
3impb |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> ( P pCnt y ) e. ZZ ) |
| 49 |
26
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> 0 < N ) |
| 50 |
|
expgt0 |
|- ( ( N e. RR /\ ( P pCnt y ) e. ZZ /\ 0 < N ) -> 0 < ( N ^ ( P pCnt y ) ) ) |
| 51 |
45 48 49 50
|
syl3anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> 0 < ( N ^ ( P pCnt y ) ) ) |
| 52 |
|
eqeq1 |
|- ( x = y -> ( x = 0 <-> y = 0 ) ) |
| 53 |
|
oveq2 |
|- ( x = y -> ( P pCnt x ) = ( P pCnt y ) ) |
| 54 |
53
|
oveq2d |
|- ( x = y -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt y ) ) ) |
| 55 |
52 54
|
ifbieq2d |
|- ( x = y -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) ) |
| 56 |
|
ovex |
|- ( N ^ ( P pCnt y ) ) e. _V |
| 57 |
42 56
|
ifex |
|- if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) e. _V |
| 58 |
55 3 57
|
fvmpt |
|- ( y e. QQ -> ( F ` y ) = if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) ) |
| 59 |
58
|
3ad2ant2 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> ( F ` y ) = if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) ) |
| 60 |
|
simp3 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> y =/= 0 ) |
| 61 |
60
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> -. y = 0 ) |
| 62 |
61
|
iffalsed |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> if ( y = 0 , 0 , ( N ^ ( P pCnt y ) ) ) = ( N ^ ( P pCnt y ) ) ) |
| 63 |
59 62
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> ( F ` y ) = ( N ^ ( P pCnt y ) ) ) |
| 64 |
51 63
|
breqtrrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ y e. QQ /\ y =/= 0 ) -> 0 < ( F ` y ) ) |
| 65 |
|
pcqmul |
|- ( ( P e. Prime /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt ( y x. z ) ) = ( ( P pCnt y ) + ( P pCnt z ) ) ) |
| 66 |
65
|
3adant1r |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt ( y x. z ) ) = ( ( P pCnt y ) + ( P pCnt z ) ) ) |
| 67 |
66
|
oveq2d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt ( y x. z ) ) ) = ( N ^ ( ( P pCnt y ) + ( P pCnt z ) ) ) ) |
| 68 |
22
|
recnd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N e. CC ) |
| 69 |
68
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N e. CC ) |
| 70 |
28
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N =/= 0 ) |
| 71 |
47
|
3adant3 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
| 72 |
|
simp1l |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> P e. Prime ) |
| 73 |
|
simp3l |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> z e. QQ ) |
| 74 |
|
simp3r |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> z =/= 0 ) |
| 75 |
|
pcqcl |
|- ( ( P e. Prime /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt z ) e. ZZ ) |
| 76 |
72 73 74 75
|
syl12anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt z ) e. ZZ ) |
| 77 |
|
expaddz |
|- ( ( ( N e. CC /\ N =/= 0 ) /\ ( ( P pCnt y ) e. ZZ /\ ( P pCnt z ) e. ZZ ) ) -> ( N ^ ( ( P pCnt y ) + ( P pCnt z ) ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
| 78 |
69 70 71 76 77
|
syl22anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( ( P pCnt y ) + ( P pCnt z ) ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
| 79 |
67 78
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt ( y x. z ) ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
| 80 |
|
simp2l |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> y e. QQ ) |
| 81 |
|
qmulcl |
|- ( ( y e. QQ /\ z e. QQ ) -> ( y x. z ) e. QQ ) |
| 82 |
80 73 81
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y x. z ) e. QQ ) |
| 83 |
|
eqeq1 |
|- ( x = ( y x. z ) -> ( x = 0 <-> ( y x. z ) = 0 ) ) |
| 84 |
|
oveq2 |
|- ( x = ( y x. z ) -> ( P pCnt x ) = ( P pCnt ( y x. z ) ) ) |
| 85 |
84
|
oveq2d |
|- ( x = ( y x. z ) -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt ( y x. z ) ) ) ) |
| 86 |
83 85
|
ifbieq2d |
|- ( x = ( y x. z ) -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) ) |
| 87 |
|
ovex |
|- ( N ^ ( P pCnt ( y x. z ) ) ) e. _V |
| 88 |
42 87
|
ifex |
|- if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) e. _V |
| 89 |
86 3 88
|
fvmpt |
|- ( ( y x. z ) e. QQ -> ( F ` ( y x. z ) ) = if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) ) |
| 90 |
82 89
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y x. z ) ) = if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) ) |
| 91 |
|
qcn |
|- ( y e. QQ -> y e. CC ) |
| 92 |
80 91
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> y e. CC ) |
| 93 |
|
qcn |
|- ( z e. QQ -> z e. CC ) |
| 94 |
73 93
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> z e. CC ) |
| 95 |
|
simp2r |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> y =/= 0 ) |
| 96 |
92 94 95 74
|
mulne0d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y x. z ) =/= 0 ) |
| 97 |
96
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> -. ( y x. z ) = 0 ) |
| 98 |
97
|
iffalsed |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> if ( ( y x. z ) = 0 , 0 , ( N ^ ( P pCnt ( y x. z ) ) ) ) = ( N ^ ( P pCnt ( y x. z ) ) ) ) |
| 99 |
90 98
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y x. z ) ) = ( N ^ ( P pCnt ( y x. z ) ) ) ) |
| 100 |
63
|
3expb |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( F ` y ) = ( N ^ ( P pCnt y ) ) ) |
| 101 |
100
|
3adant3 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` y ) = ( N ^ ( P pCnt y ) ) ) |
| 102 |
|
eqeq1 |
|- ( x = z -> ( x = 0 <-> z = 0 ) ) |
| 103 |
|
oveq2 |
|- ( x = z -> ( P pCnt x ) = ( P pCnt z ) ) |
| 104 |
103
|
oveq2d |
|- ( x = z -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt z ) ) ) |
| 105 |
102 104
|
ifbieq2d |
|- ( x = z -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) ) |
| 106 |
|
ovex |
|- ( N ^ ( P pCnt z ) ) e. _V |
| 107 |
42 106
|
ifex |
|- if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) e. _V |
| 108 |
105 3 107
|
fvmpt |
|- ( z e. QQ -> ( F ` z ) = if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) ) |
| 109 |
73 108
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` z ) = if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) ) |
| 110 |
74
|
neneqd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> -. z = 0 ) |
| 111 |
110
|
iffalsed |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> if ( z = 0 , 0 , ( N ^ ( P pCnt z ) ) ) = ( N ^ ( P pCnt z ) ) ) |
| 112 |
109 111
|
eqtrd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` z ) = ( N ^ ( P pCnt z ) ) ) |
| 113 |
101 112
|
oveq12d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( ( N ^ ( P pCnt y ) ) x. ( N ^ ( P pCnt z ) ) ) ) |
| 114 |
79 99 113
|
3eqtr4d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
| 115 |
|
iftrue |
|- ( ( y + z ) = 0 -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) = 0 ) |
| 116 |
115
|
breq1d |
|- ( ( y + z ) = 0 -> ( if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) <-> 0 <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) ) |
| 117 |
|
ifnefalse |
|- ( ( y + z ) =/= 0 -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) = ( N ^ ( P pCnt ( y + z ) ) ) ) |
| 118 |
117
|
adantl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) = ( N ^ ( P pCnt ( y + z ) ) ) ) |
| 119 |
71
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt y ) e. ZZ ) |
| 120 |
119
|
zred |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt y ) e. RR ) |
| 121 |
76
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt z ) e. ZZ ) |
| 122 |
121
|
zred |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt z ) e. RR ) |
| 123 |
22
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N e. RR ) |
| 124 |
123
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> N e. RR ) |
| 125 |
70
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> N =/= 0 ) |
| 126 |
72
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> P e. Prime ) |
| 127 |
|
qaddcl |
|- ( ( y e. QQ /\ z e. QQ ) -> ( y + z ) e. QQ ) |
| 128 |
80 73 127
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y + z ) e. QQ ) |
| 129 |
128
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( y + z ) e. QQ ) |
| 130 |
|
simpr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( y + z ) =/= 0 ) |
| 131 |
|
pcqcl |
|- ( ( P e. Prime /\ ( ( y + z ) e. QQ /\ ( y + z ) =/= 0 ) ) -> ( P pCnt ( y + z ) ) e. ZZ ) |
| 132 |
126 129 130 131
|
syl12anc |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt ( y + z ) ) e. ZZ ) |
| 133 |
132
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt ( y + z ) ) e. ZZ ) |
| 134 |
124 125 133
|
reexpclzd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) e. RR ) |
| 135 |
119
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt y ) e. ZZ ) |
| 136 |
124 125 135
|
reexpclzd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt y ) ) e. RR ) |
| 137 |
|
simpl1 |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P e. Prime /\ N e. ( 0 (,) 1 ) ) ) |
| 138 |
137 22
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N e. RR ) |
| 139 |
137 28
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N =/= 0 ) |
| 140 |
138 139 119
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt y ) ) e. RR ) |
| 141 |
138 139 121
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt z ) ) e. RR ) |
| 142 |
140 141
|
readdcld |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR ) |
| 143 |
142
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR ) |
| 144 |
126
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> P e. Prime ) |
| 145 |
80
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> y e. QQ ) |
| 146 |
73
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> z e. QQ ) |
| 147 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt y ) <_ ( P pCnt z ) ) |
| 148 |
144 145 146 147
|
pcadd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( P pCnt y ) <_ ( P pCnt ( y + z ) ) ) |
| 149 |
137 27
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N e. RR+ ) |
| 150 |
25
|
simprd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> N < 1 ) |
| 151 |
137 150
|
syl |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> N < 1 ) |
| 152 |
149 119 132 151
|
ltexp2rd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt ( y + z ) ) < ( P pCnt y ) <-> ( N ^ ( P pCnt y ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 153 |
152
|
notbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( -. ( P pCnt ( y + z ) ) < ( P pCnt y ) <-> -. ( N ^ ( P pCnt y ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 154 |
132
|
zred |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( P pCnt ( y + z ) ) e. RR ) |
| 155 |
120 154
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt y ) <_ ( P pCnt ( y + z ) ) <-> -. ( P pCnt ( y + z ) ) < ( P pCnt y ) ) ) |
| 156 |
138 139 132
|
reexpclzd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt ( y + z ) ) ) e. RR ) |
| 157 |
156 140
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) <-> -. ( N ^ ( P pCnt y ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 158 |
153 155 157
|
3bitr4d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt y ) <_ ( P pCnt ( y + z ) ) <-> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) ) ) |
| 159 |
158
|
biimpa |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt ( y + z ) ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) ) |
| 160 |
148 159
|
syldan |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt y ) ) ) |
| 161 |
27
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> N e. RR+ ) |
| 162 |
161 76
|
rpexpcld |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt z ) ) e. RR+ ) |
| 163 |
162
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt z ) ) e. RR+ ) |
| 164 |
163
|
rpge0d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> 0 <_ ( N ^ ( P pCnt z ) ) ) |
| 165 |
140 141
|
addge01d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( 0 <_ ( N ^ ( P pCnt z ) ) <-> ( N ^ ( P pCnt y ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) ) |
| 166 |
164 165
|
mpbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt y ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 167 |
166
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt y ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 168 |
134 136 143 160 167
|
letrd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt y ) <_ ( P pCnt z ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 169 |
156
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) e. RR ) |
| 170 |
141
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt z ) ) e. RR ) |
| 171 |
142
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR ) |
| 172 |
126
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> P e. Prime ) |
| 173 |
73
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> z e. QQ ) |
| 174 |
80
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> y e. QQ ) |
| 175 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt z ) <_ ( P pCnt y ) ) |
| 176 |
172 173 174 175
|
pcadd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt z ) <_ ( P pCnt ( z + y ) ) ) |
| 177 |
92 94
|
addcomd |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( y + z ) = ( z + y ) ) |
| 178 |
177
|
oveq2d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( P pCnt ( y + z ) ) = ( P pCnt ( z + y ) ) ) |
| 179 |
178
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt ( y + z ) ) = ( P pCnt ( z + y ) ) ) |
| 180 |
176 179
|
breqtrrd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( P pCnt z ) <_ ( P pCnt ( y + z ) ) ) |
| 181 |
149 121 132 151
|
ltexp2rd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt ( y + z ) ) < ( P pCnt z ) <-> ( N ^ ( P pCnt z ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 182 |
181
|
notbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( -. ( P pCnt ( y + z ) ) < ( P pCnt z ) <-> -. ( N ^ ( P pCnt z ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 183 |
122 154
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt z ) <_ ( P pCnt ( y + z ) ) <-> -. ( P pCnt ( y + z ) ) < ( P pCnt z ) ) ) |
| 184 |
156 141
|
lenltd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) <-> -. ( N ^ ( P pCnt z ) ) < ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 185 |
182 183 184
|
3bitr4d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( ( P pCnt z ) <_ ( P pCnt ( y + z ) ) <-> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) ) ) |
| 186 |
185
|
biimpa |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt ( y + z ) ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) ) |
| 187 |
180 186
|
syldan |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( N ^ ( P pCnt z ) ) ) |
| 188 |
161 71
|
rpexpcld |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( N ^ ( P pCnt y ) ) e. RR+ ) |
| 189 |
188
|
adantr |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt y ) ) e. RR+ ) |
| 190 |
189
|
rpge0d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> 0 <_ ( N ^ ( P pCnt y ) ) ) |
| 191 |
141 140
|
addge02d |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( 0 <_ ( N ^ ( P pCnt y ) ) <-> ( N ^ ( P pCnt z ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) ) |
| 192 |
190 191
|
mpbid |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt z ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 193 |
192
|
adantr |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt z ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 194 |
169 170 171 187 193
|
letrd |
|- ( ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) /\ ( P pCnt z ) <_ ( P pCnt y ) ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 195 |
120 122 168 194
|
lecasei |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> ( N ^ ( P pCnt ( y + z ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 196 |
118 195
|
eqbrtrd |
|- ( ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) /\ ( y + z ) =/= 0 ) -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 197 |
188 162
|
rpaddcld |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) e. RR+ ) |
| 198 |
197
|
rpge0d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> 0 <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 199 |
116 196 198
|
pm2.61ne |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) <_ ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 200 |
|
eqeq1 |
|- ( x = ( y + z ) -> ( x = 0 <-> ( y + z ) = 0 ) ) |
| 201 |
|
oveq2 |
|- ( x = ( y + z ) -> ( P pCnt x ) = ( P pCnt ( y + z ) ) ) |
| 202 |
201
|
oveq2d |
|- ( x = ( y + z ) -> ( N ^ ( P pCnt x ) ) = ( N ^ ( P pCnt ( y + z ) ) ) ) |
| 203 |
200 202
|
ifbieq2d |
|- ( x = ( y + z ) -> if ( x = 0 , 0 , ( N ^ ( P pCnt x ) ) ) = if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 204 |
|
ovex |
|- ( N ^ ( P pCnt ( y + z ) ) ) e. _V |
| 205 |
42 204
|
ifex |
|- if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) e. _V |
| 206 |
203 3 205
|
fvmpt |
|- ( ( y + z ) e. QQ -> ( F ` ( y + z ) ) = if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 207 |
128 206
|
syl |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y + z ) ) = if ( ( y + z ) = 0 , 0 , ( N ^ ( P pCnt ( y + z ) ) ) ) ) |
| 208 |
101 112
|
oveq12d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( ( F ` y ) + ( F ` z ) ) = ( ( N ^ ( P pCnt y ) ) + ( N ^ ( P pCnt z ) ) ) ) |
| 209 |
199 207 208
|
3brtr4d |
|- ( ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) /\ ( y e. QQ /\ y =/= 0 ) /\ ( z e. QQ /\ z =/= 0 ) ) -> ( F ` ( y + z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
| 210 |
4 6 10 13 15 18 37 44 64 114 209
|
isabvd |
|- ( ( P e. Prime /\ N e. ( 0 (,) 1 ) ) -> F e. A ) |