| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pairreueq.p |
|- P = { x e. ~P V | ( # ` x ) = 2 } |
| 2 |
|
fveqeq2 |
|- ( x = p -> ( ( # ` x ) = 2 <-> ( # ` p ) = 2 ) ) |
| 3 |
2 1
|
elrab2 |
|- ( p e. P <-> ( p e. ~P V /\ ( # ` p ) = 2 ) ) |
| 4 |
3
|
anbi1i |
|- ( ( p e. P /\ ph ) <-> ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) ) |
| 5 |
|
anass |
|- ( ( ( p e. ~P V /\ ( # ` p ) = 2 ) /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) |
| 6 |
4 5
|
bitri |
|- ( ( p e. P /\ ph ) <-> ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) |
| 7 |
6
|
eubii |
|- ( E! p ( p e. P /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) |
| 8 |
|
df-reu |
|- ( E! p e. P ph <-> E! p ( p e. P /\ ph ) ) |
| 9 |
|
df-reu |
|- ( E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) <-> E! p ( p e. ~P V /\ ( ( # ` p ) = 2 /\ ph ) ) ) |
| 10 |
7 8 9
|
3bitr4i |
|- ( E! p e. P ph <-> E! p e. ~P V ( ( # ` p ) = 2 /\ ph ) ) |