Description: Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | parteq1 | |- ( R = S -> ( R Part A <-> S Part A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjdmqseqeq1 | |- ( R = S -> ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( Disj S /\ ( dom S /. S ) = A ) ) ) |
|
2 | dfpart2 | |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) |
|
3 | dfpart2 | |- ( S Part A <-> ( Disj S /\ ( dom S /. S ) = A ) ) |
|
4 | 1 2 3 | 3bitr4g | |- ( R = S -> ( R Part A <-> S Part A ) ) |