Metamath Proof Explorer


Theorem partim2

Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim . Lemma for petlem . (Contributed by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion partim2
|- ( ( Disj R /\ ( dom R /. R ) = A ) -> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) )

Proof

Step Hyp Ref Expression
1 disjim
 |-  ( Disj R -> EqvRel ,~ R )
2 1 adantr
 |-  ( ( Disj R /\ ( dom R /. R ) = A ) -> EqvRel ,~ R )
3 disjdmqseq
 |-  ( Disj R -> ( ( dom R /. R ) = A <-> ( dom ,~ R /. ,~ R ) = A ) )
4 3 biimpa
 |-  ( ( Disj R /\ ( dom R /. R ) = A ) -> ( dom ,~ R /. ,~ R ) = A )
5 2 4 jca
 |-  ( ( Disj R /\ ( dom R /. R ) = A ) -> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) )