Metamath Proof Explorer


Theorem partimeq

Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq . (Contributed by Peter Mazsa, 25-Dec-2024)

Ref Expression
Assertion partimeq
|- ( R e. V -> ( R Part A -> ~ A = ,~ R ) )

Proof

Step Hyp Ref Expression
1 cossex
 |-  ( R e. V -> ,~ R e. _V )
2 partim
 |-  ( R Part A -> ,~ R ErALTV A )
3 erimeq
 |-  ( ,~ R e. _V -> ( ,~ R ErALTV A -> ~ A = ,~ R ) )
4 1 2 3 syl2im
 |-  ( R e. V -> ( R Part A -> ~ A = ,~ R ) )