Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | partsuc | |- ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressucdifsn | |- ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A ) |
|
2 | sucdifsn | |- ( suc A \ { A } ) = A |
|
3 | parteq12 | |- ( ( ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( suc A \ { A } ) = A ) -> ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) ) |
|
4 | 1 2 3 | mp2an | |- ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) |