| Step | Hyp | Ref | Expression | 
						
							| 1 |  | paste.1 |  |-  X = U. J | 
						
							| 2 |  | paste.2 |  |-  Y = U. K | 
						
							| 3 |  | paste.4 |  |-  ( ph -> A e. ( Clsd ` J ) ) | 
						
							| 4 |  | paste.5 |  |-  ( ph -> B e. ( Clsd ` J ) ) | 
						
							| 5 |  | paste.6 |  |-  ( ph -> ( A u. B ) = X ) | 
						
							| 6 |  | paste.7 |  |-  ( ph -> F : X --> Y ) | 
						
							| 7 |  | paste.8 |  |-  ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) | 
						
							| 8 |  | paste.9 |  |-  ( ph -> ( F |` B ) e. ( ( J |`t B ) Cn K ) ) | 
						
							| 9 | 5 | ineq2d |  |-  ( ph -> ( ( `' F " y ) i^i ( A u. B ) ) = ( ( `' F " y ) i^i X ) ) | 
						
							| 10 |  | indi |  |-  ( ( `' F " y ) i^i ( A u. B ) ) = ( ( ( `' F " y ) i^i A ) u. ( ( `' F " y ) i^i B ) ) | 
						
							| 11 | 6 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 12 |  | respreima |  |-  ( Fun F -> ( `' ( F |` A ) " y ) = ( ( `' F " y ) i^i A ) ) | 
						
							| 13 |  | respreima |  |-  ( Fun F -> ( `' ( F |` B ) " y ) = ( ( `' F " y ) i^i B ) ) | 
						
							| 14 | 12 13 | uneq12d |  |-  ( Fun F -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) = ( ( ( `' F " y ) i^i A ) u. ( ( `' F " y ) i^i B ) ) ) | 
						
							| 15 | 11 14 | syl |  |-  ( ph -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) = ( ( ( `' F " y ) i^i A ) u. ( ( `' F " y ) i^i B ) ) ) | 
						
							| 16 | 10 15 | eqtr4id |  |-  ( ph -> ( ( `' F " y ) i^i ( A u. B ) ) = ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) ) | 
						
							| 17 |  | imassrn |  |-  ( `' F " y ) C_ ran `' F | 
						
							| 18 |  | dfdm4 |  |-  dom F = ran `' F | 
						
							| 19 |  | fdm |  |-  ( F : X --> Y -> dom F = X ) | 
						
							| 20 | 18 19 | eqtr3id |  |-  ( F : X --> Y -> ran `' F = X ) | 
						
							| 21 | 17 20 | sseqtrid |  |-  ( F : X --> Y -> ( `' F " y ) C_ X ) | 
						
							| 22 | 6 21 | syl |  |-  ( ph -> ( `' F " y ) C_ X ) | 
						
							| 23 |  | dfss2 |  |-  ( ( `' F " y ) C_ X <-> ( ( `' F " y ) i^i X ) = ( `' F " y ) ) | 
						
							| 24 | 22 23 | sylib |  |-  ( ph -> ( ( `' F " y ) i^i X ) = ( `' F " y ) ) | 
						
							| 25 | 9 16 24 | 3eqtr3rd |  |-  ( ph -> ( `' F " y ) = ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' F " y ) = ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) ) | 
						
							| 27 |  | cnclima |  |-  ( ( ( F |` A ) e. ( ( J |`t A ) Cn K ) /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` ( J |`t A ) ) ) | 
						
							| 28 | 7 27 | sylan |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` ( J |`t A ) ) ) | 
						
							| 29 |  | restcldr |  |-  ( ( A e. ( Clsd ` J ) /\ ( `' ( F |` A ) " y ) e. ( Clsd ` ( J |`t A ) ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` J ) ) | 
						
							| 30 | 3 28 29 | syl2an2r |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` J ) ) | 
						
							| 31 |  | cnclima |  |-  ( ( ( F |` B ) e. ( ( J |`t B ) Cn K ) /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` ( J |`t B ) ) ) | 
						
							| 32 | 8 31 | sylan |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` ( J |`t B ) ) ) | 
						
							| 33 |  | restcldr |  |-  ( ( B e. ( Clsd ` J ) /\ ( `' ( F |` B ) " y ) e. ( Clsd ` ( J |`t B ) ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` J ) ) | 
						
							| 34 | 4 32 33 | syl2an2r |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` J ) ) | 
						
							| 35 |  | uncld |  |-  ( ( ( `' ( F |` A ) " y ) e. ( Clsd ` J ) /\ ( `' ( F |` B ) " y ) e. ( Clsd ` J ) ) -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) e. ( Clsd ` J ) ) | 
						
							| 36 | 30 34 35 | syl2anc |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) e. ( Clsd ` J ) ) | 
						
							| 37 | 26 36 | eqeltrd |  |-  ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' F " y ) e. ( Clsd ` J ) ) | 
						
							| 38 | 37 | ralrimiva |  |-  ( ph -> A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) | 
						
							| 39 |  | cldrcl |  |-  ( A e. ( Clsd ` J ) -> J e. Top ) | 
						
							| 40 | 3 39 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 41 |  | cntop2 |  |-  ( ( F |` A ) e. ( ( J |`t A ) Cn K ) -> K e. Top ) | 
						
							| 42 | 7 41 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 43 | 1 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 44 | 2 | toptopon |  |-  ( K e. Top <-> K e. ( TopOn ` Y ) ) | 
						
							| 45 |  | iscncl |  |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) ) ) | 
						
							| 46 | 43 44 45 | syl2anb |  |-  ( ( J e. Top /\ K e. Top ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) ) ) | 
						
							| 47 | 40 42 46 | syl2anc |  |-  ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) ) ) | 
						
							| 48 | 6 38 47 | mpbir2and |  |-  ( ph -> F e. ( J Cn K ) ) |