| Step | Hyp | Ref | Expression | 
						
							| 1 |  | patoms.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | patoms.z |  |-  .0. = ( 0. ` K ) | 
						
							| 3 |  | patoms.c |  |-  C = (  | 
						
							| 4 |  | patoms.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | elex |  |-  ( K e. D -> K e. _V ) | 
						
							| 6 |  | fveq2 |  |-  ( p = K -> ( Base ` p ) = ( Base ` K ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( p = K -> ( Base ` p ) = B ) | 
						
							| 8 |  | fveq2 |  |-  ( p = K -> (  | 
						
							| 9 | 8 3 | eqtr4di |  |-  ( p = K -> (  | 
						
							| 10 | 9 | breqd |  |-  ( p = K -> ( ( 0. ` p ) (  ( 0. ` p ) C x ) ) | 
						
							| 11 |  | fveq2 |  |-  ( p = K -> ( 0. ` p ) = ( 0. ` K ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( p = K -> ( 0. ` p ) = .0. ) | 
						
							| 13 | 12 | breq1d |  |-  ( p = K -> ( ( 0. ` p ) C x <-> .0. C x ) ) | 
						
							| 14 | 10 13 | bitrd |  |-  ( p = K -> ( ( 0. ` p ) (  .0. C x ) ) | 
						
							| 15 | 7 14 | rabeqbidv |  |-  ( p = K -> { x e. ( Base ` p ) | ( 0. ` p ) (  | 
						
							| 16 |  | df-ats |  |-  Atoms = ( p e. _V |-> { x e. ( Base ` p ) | ( 0. ` p ) (  | 
						
							| 17 | 1 | fvexi |  |-  B e. _V | 
						
							| 18 | 17 | rabex |  |-  { x e. B | .0. C x } e. _V | 
						
							| 19 | 15 16 18 | fvmpt |  |-  ( K e. _V -> ( Atoms ` K ) = { x e. B | .0. C x } ) | 
						
							| 20 | 4 19 | eqtrid |  |-  ( K e. _V -> A = { x e. B | .0. C x } ) | 
						
							| 21 | 5 20 | syl |  |-  ( K e. D -> A = { x e. B | .0. C x } ) |