Metamath Proof Explorer


Theorem pats

Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses patoms.b
|- B = ( Base ` K )
patoms.z
|- .0. = ( 0. ` K )
patoms.c
|- C = ( 
patoms.a
|- A = ( Atoms ` K )
Assertion pats
|- ( K e. D -> A = { x e. B | .0. C x } )

Proof

Step Hyp Ref Expression
1 patoms.b
 |-  B = ( Base ` K )
2 patoms.z
 |-  .0. = ( 0. ` K )
3 patoms.c
 |-  C = ( 
4 patoms.a
 |-  A = ( Atoms ` K )
5 elex
 |-  ( K e. D -> K e. _V )
6 fveq2
 |-  ( p = K -> ( Base ` p ) = ( Base ` K ) )
7 6 1 eqtr4di
 |-  ( p = K -> ( Base ` p ) = B )
8 fveq2
 |-  ( p = K -> ( 
9 8 3 eqtr4di
 |-  ( p = K -> ( 
10 9 breqd
 |-  ( p = K -> ( ( 0. ` p ) (  ( 0. ` p ) C x ) )
11 fveq2
 |-  ( p = K -> ( 0. ` p ) = ( 0. ` K ) )
12 11 2 eqtr4di
 |-  ( p = K -> ( 0. ` p ) = .0. )
13 12 breq1d
 |-  ( p = K -> ( ( 0. ` p ) C x <-> .0. C x ) )
14 10 13 bitrd
 |-  ( p = K -> ( ( 0. ` p ) (  .0. C x ) )
15 7 14 rabeqbidv
 |-  ( p = K -> { x e. ( Base ` p ) | ( 0. ` p ) ( 
16 df-ats
 |-  Atoms = ( p e. _V |-> { x e. ( Base ` p ) | ( 0. ` p ) ( 
17 1 fvexi
 |-  B e. _V
18 17 rabex
 |-  { x e. B | .0. C x } e. _V
19 15 16 18 fvmpt
 |-  ( K e. _V -> ( Atoms ` K ) = { x e. B | .0. C x } )
20 4 19 eqtrid
 |-  ( K e. _V -> A = { x e. B | .0. C x } )
21 5 20 syl
 |-  ( K e. D -> A = { x e. B | .0. C x } )