| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|- 0 e. ZZ |
| 2 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
| 3 |
1 2
|
ax-mp |
|- 0 e. QQ |
| 4 |
|
iftrue |
|- ( r = 0 -> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) = +oo ) |
| 5 |
4
|
adantl |
|- ( ( p = P /\ r = 0 ) -> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) = +oo ) |
| 6 |
|
df-pc |
|- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
| 7 |
|
pnfex |
|- +oo e. _V |
| 8 |
5 6 7
|
ovmpoa |
|- ( ( P e. Prime /\ 0 e. QQ ) -> ( P pCnt 0 ) = +oo ) |
| 9 |
3 8
|
mpan2 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |