| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 3 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) |
| 4 |
3
|
pczpre |
|- ( ( P e. Prime /\ ( 1 e. ZZ /\ 1 =/= 0 ) ) -> ( P pCnt 1 ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) |
| 5 |
1 2 4
|
mpanr12 |
|- ( P e. Prime -> ( P pCnt 1 ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) |
| 6 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 7 |
|
eqid |
|- 1 = 1 |
| 8 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || 1 } = { n e. NN0 | ( P ^ n ) || 1 } |
| 9 |
8 3
|
pcpre1 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ 1 = 1 ) -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 10 |
6 7 9
|
sylancl |
|- ( P e. Prime -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 11 |
5 10
|
eqtrd |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |