Step |
Hyp |
Ref |
Expression |
1 |
|
pcdvdstr |
|- ( ( p e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( p pCnt A ) <_ ( p pCnt B ) ) |
2 |
1
|
ancoms |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ A || B ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt B ) ) |
3 |
2
|
ralrimiva |
|- ( ( A e. ZZ /\ B e. ZZ /\ A || B ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) |
4 |
3
|
3expia |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
5 |
|
oveq2 |
|- ( A = 0 -> ( p pCnt A ) = ( p pCnt 0 ) ) |
6 |
5
|
breq1d |
|- ( A = 0 -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( p pCnt 0 ) <_ ( p pCnt B ) ) ) |
7 |
6
|
ralbidv |
|- ( A = 0 -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) <-> A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) ) |
8 |
|
breq1 |
|- ( A = 0 -> ( A || B <-> 0 || B ) ) |
9 |
7 8
|
imbi12d |
|- ( A = 0 -> ( ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) <-> ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) ) |
10 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
11 |
10
|
simpld |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || A ) |
12 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
13 |
12
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
14 |
|
simpl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
15 |
|
dvdsabsb |
|- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A gcd B ) || ( abs ` A ) ) ) |
16 |
13 14 15
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> ( A gcd B ) || ( abs ` A ) ) ) |
17 |
11 16
|
mpbid |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || ( abs ` A ) ) |
18 |
17
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) || ( abs ` A ) ) |
19 |
|
simpl |
|- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
20 |
19
|
necon3ai |
|- ( A =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
21 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
22 |
20 21
|
sylan2 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. NN ) |
23 |
22
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. ZZ ) |
24 |
22
|
nnne0d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) =/= 0 ) |
25 |
|
nnabscl |
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
26 |
25
|
adantlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
27 |
26
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. ZZ ) |
28 |
|
dvdsval2 |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ ( abs ` A ) e. ZZ ) -> ( ( A gcd B ) || ( abs ` A ) <-> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) ) |
29 |
23 24 27 28
|
syl3anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) || ( abs ` A ) <-> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) ) |
30 |
18 29
|
mpbid |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) |
31 |
|
nnre |
|- ( ( abs ` A ) e. NN -> ( abs ` A ) e. RR ) |
32 |
|
nngt0 |
|- ( ( abs ` A ) e. NN -> 0 < ( abs ` A ) ) |
33 |
31 32
|
jca |
|- ( ( abs ` A ) e. NN -> ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) |
34 |
|
nnre |
|- ( ( A gcd B ) e. NN -> ( A gcd B ) e. RR ) |
35 |
|
nngt0 |
|- ( ( A gcd B ) e. NN -> 0 < ( A gcd B ) ) |
36 |
34 35
|
jca |
|- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) ) |
37 |
|
divgt0 |
|- ( ( ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) /\ ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) |
38 |
33 36 37
|
syl2an |
|- ( ( ( abs ` A ) e. NN /\ ( A gcd B ) e. NN ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) |
39 |
26 22 38
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) |
40 |
|
elnnz |
|- ( ( ( abs ` A ) / ( A gcd B ) ) e. NN <-> ( ( ( abs ` A ) / ( A gcd B ) ) e. ZZ /\ 0 < ( ( abs ` A ) / ( A gcd B ) ) ) ) |
41 |
30 39 40
|
sylanbrc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( abs ` A ) / ( A gcd B ) ) e. NN ) |
42 |
|
elnn1uz2 |
|- ( ( ( abs ` A ) / ( A gcd B ) ) e. NN <-> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) ) |
43 |
41 42
|
sylib |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) ) |
44 |
10
|
simprd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || B ) |
45 |
44
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) || B ) |
46 |
|
breq1 |
|- ( ( A gcd B ) = ( abs ` A ) -> ( ( A gcd B ) || B <-> ( abs ` A ) || B ) ) |
47 |
45 46
|
syl5ibcom |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) = ( abs ` A ) -> ( abs ` A ) || B ) ) |
48 |
26
|
nncnd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
49 |
22
|
nncnd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. CC ) |
50 |
|
1cnd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> 1 e. CC ) |
51 |
48 49 50 24
|
divmuld |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 <-> ( ( A gcd B ) x. 1 ) = ( abs ` A ) ) ) |
52 |
49
|
mulid1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) x. 1 ) = ( A gcd B ) ) |
53 |
52
|
eqeq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( A gcd B ) x. 1 ) = ( abs ` A ) <-> ( A gcd B ) = ( abs ` A ) ) ) |
54 |
51 53
|
bitrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 <-> ( A gcd B ) = ( abs ` A ) ) ) |
55 |
|
absdvdsb |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> ( abs ` A ) || B ) ) |
56 |
55
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A || B <-> ( abs ` A ) || B ) ) |
57 |
47 54 56
|
3imtr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 -> A || B ) ) |
58 |
|
exprmfct |
|- ( ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) ) |
59 |
|
simprl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> p e. Prime ) |
60 |
26
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. NN ) |
61 |
60
|
nnzd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. ZZ ) |
62 |
60
|
nnne0d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) =/= 0 ) |
63 |
22
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( A gcd B ) e. NN ) |
64 |
|
pcdiv |
|- ( ( p e. Prime /\ ( ( abs ` A ) e. ZZ /\ ( abs ` A ) =/= 0 ) /\ ( A gcd B ) e. NN ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) ) |
65 |
59 61 62 63 64
|
syl121anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) ) |
66 |
|
simplll |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A e. ZZ ) |
67 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
68 |
66 67
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A e. QQ ) |
69 |
|
pcabs |
|- ( ( p e. Prime /\ A e. QQ ) -> ( p pCnt ( abs ` A ) ) = ( p pCnt A ) ) |
70 |
59 68 69
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( abs ` A ) ) = ( p pCnt A ) ) |
71 |
70
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) = ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) ) |
72 |
65 71
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) ) |
73 |
|
simprr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> p || ( ( abs ` A ) / ( A gcd B ) ) ) |
74 |
41
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd B ) ) e. NN ) |
75 |
|
pcelnn |
|- ( ( p e. Prime /\ ( ( abs ` A ) / ( A gcd B ) ) e. NN ) -> ( ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN <-> p || ( ( abs ` A ) / ( A gcd B ) ) ) ) |
76 |
59 74 75
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN <-> p || ( ( abs ` A ) / ( A gcd B ) ) ) ) |
77 |
73 76
|
mpbird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN ) |
78 |
72 77
|
eqeltrrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) |
79 |
59 63
|
pccld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. NN0 ) |
80 |
79
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. ZZ ) |
81 |
|
simplr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A =/= 0 ) |
82 |
|
pczcl |
|- ( ( p e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( p pCnt A ) e. NN0 ) |
83 |
59 66 81 82
|
syl12anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. NN0 ) |
84 |
83
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. ZZ ) |
85 |
|
znnsub |
|- ( ( ( p pCnt ( A gcd B ) ) e. ZZ /\ ( p pCnt A ) e. ZZ ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) ) |
86 |
80 84 85
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) ) |
87 |
78 86
|
mpbird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) < ( p pCnt A ) ) |
88 |
79
|
nn0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. RR ) |
89 |
83
|
nn0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. RR ) |
90 |
88 89
|
ltnled |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> -. ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) ) |
91 |
87 90
|
mpbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) |
92 |
|
simpllr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> B e. ZZ ) |
93 |
|
nprmdvds1 |
|- ( p e. Prime -> -. p || 1 ) |
94 |
93
|
ad2antrl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. p || 1 ) |
95 |
|
gcdid0 |
|- ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) |
96 |
66 95
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( A gcd 0 ) = ( abs ` A ) ) |
97 |
96
|
oveq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd 0 ) ) = ( ( abs ` A ) / ( abs ` A ) ) ) |
98 |
48
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. CC ) |
99 |
98 62
|
dividd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( abs ` A ) ) = 1 ) |
100 |
97 99
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd 0 ) ) = 1 ) |
101 |
100
|
breq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p || ( ( abs ` A ) / ( A gcd 0 ) ) <-> p || 1 ) ) |
102 |
94 101
|
mtbird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. p || ( ( abs ` A ) / ( A gcd 0 ) ) ) |
103 |
|
oveq2 |
|- ( B = 0 -> ( A gcd B ) = ( A gcd 0 ) ) |
104 |
103
|
oveq2d |
|- ( B = 0 -> ( ( abs ` A ) / ( A gcd B ) ) = ( ( abs ` A ) / ( A gcd 0 ) ) ) |
105 |
104
|
breq2d |
|- ( B = 0 -> ( p || ( ( abs ` A ) / ( A gcd B ) ) <-> p || ( ( abs ` A ) / ( A gcd 0 ) ) ) ) |
106 |
73 105
|
syl5ibcom |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( B = 0 -> p || ( ( abs ` A ) / ( A gcd 0 ) ) ) ) |
107 |
106
|
necon3bd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( -. p || ( ( abs ` A ) / ( A gcd 0 ) ) -> B =/= 0 ) ) |
108 |
102 107
|
mpd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> B =/= 0 ) |
109 |
|
pczcl |
|- ( ( p e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. NN0 ) |
110 |
59 92 108 109
|
syl12anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt B ) e. NN0 ) |
111 |
110
|
nn0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt B ) e. RR ) |
112 |
|
lemin |
|- ( ( ( p pCnt A ) e. RR /\ ( p pCnt A ) e. RR /\ ( p pCnt B ) e. RR ) -> ( ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
113 |
89 89 111 112
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
114 |
|
pcgcd |
|- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
115 |
59 66 92 114
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
116 |
115
|
breq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) <-> ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) ) |
117 |
89
|
leidd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) <_ ( p pCnt A ) ) |
118 |
117
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
119 |
113 116 118
|
3bitr4rd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) ) |
120 |
91 119
|
mtbird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. ( p pCnt A ) <_ ( p pCnt B ) ) |
121 |
120
|
expr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p || ( ( abs ` A ) / ( A gcd B ) ) -> -. ( p pCnt A ) <_ ( p pCnt B ) ) ) |
122 |
121
|
reximdva |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) -> E. p e. Prime -. ( p pCnt A ) <_ ( p pCnt B ) ) ) |
123 |
|
rexnal |
|- ( E. p e. Prime -. ( p pCnt A ) <_ ( p pCnt B ) <-> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) |
124 |
122 123
|
syl6ib |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
125 |
58 124
|
syl5 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
126 |
57 125
|
orim12d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) -> ( A || B \/ -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
127 |
43 126
|
mpd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A || B \/ -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
128 |
127
|
ord |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( -. A || B -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
129 |
128
|
con4d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) ) |
130 |
|
2prm |
|- 2 e. Prime |
131 |
130
|
ne0ii |
|- Prime =/= (/) |
132 |
|
r19.2z |
|- ( ( Prime =/= (/) /\ A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) -> E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) |
133 |
131 132
|
mpan |
|- ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) |
134 |
|
id |
|- ( p e. Prime -> p e. Prime ) |
135 |
|
zq |
|- ( B e. ZZ -> B e. QQ ) |
136 |
135
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B e. QQ ) |
137 |
|
pcxcl |
|- ( ( p e. Prime /\ B e. QQ ) -> ( p pCnt B ) e. RR* ) |
138 |
134 136 137
|
syl2anr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt B ) e. RR* ) |
139 |
|
pnfge |
|- ( ( p pCnt B ) e. RR* -> ( p pCnt B ) <_ +oo ) |
140 |
138 139
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt B ) <_ +oo ) |
141 |
140
|
biantrurd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( +oo <_ ( p pCnt B ) <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) |
142 |
|
pc0 |
|- ( p e. Prime -> ( p pCnt 0 ) = +oo ) |
143 |
142
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt 0 ) = +oo ) |
144 |
143
|
breq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) <-> +oo <_ ( p pCnt B ) ) ) |
145 |
|
pnfxr |
|- +oo e. RR* |
146 |
|
xrletri3 |
|- ( ( ( p pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( p pCnt B ) = +oo <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) |
147 |
138 145 146
|
sylancl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt B ) = +oo <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) |
148 |
141 144 147
|
3bitr4d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) <-> ( p pCnt B ) = +oo ) ) |
149 |
|
pnfnre |
|- +oo e/ RR |
150 |
149
|
neli |
|- -. +oo e. RR |
151 |
|
eleq1 |
|- ( ( p pCnt B ) = +oo -> ( ( p pCnt B ) e. RR <-> +oo e. RR ) ) |
152 |
150 151
|
mtbiri |
|- ( ( p pCnt B ) = +oo -> -. ( p pCnt B ) e. RR ) |
153 |
109
|
nn0red |
|- ( ( p e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) |
154 |
153
|
adantll |
|- ( ( ( A e. ZZ /\ p e. Prime ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) |
155 |
154
|
an4s |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( p e. Prime /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) |
156 |
155
|
expr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( B =/= 0 -> ( p pCnt B ) e. RR ) ) |
157 |
156
|
necon1bd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( -. ( p pCnt B ) e. RR -> B = 0 ) ) |
158 |
152 157
|
syl5 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt B ) = +oo -> B = 0 ) ) |
159 |
148 158
|
sylbid |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) -> B = 0 ) ) |
160 |
159
|
rexlimdva |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> B = 0 ) ) |
161 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
162 |
161
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 || B <-> B = 0 ) ) |
163 |
160 162
|
sylibrd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) |
164 |
133 163
|
syl5 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) |
165 |
9 129 164
|
pm2.61ne |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) ) |
166 |
4 165
|
impbid |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |