| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pcdvdstr |  |-  ( ( p e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( p pCnt A ) <_ ( p pCnt B ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ A || B ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt B ) ) | 
						
							| 3 | 2 | ralrimiva |  |-  ( ( A e. ZZ /\ B e. ZZ /\ A || B ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) | 
						
							| 4 | 3 | 3expia |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( A = 0 -> ( p pCnt A ) = ( p pCnt 0 ) ) | 
						
							| 6 | 5 | breq1d |  |-  ( A = 0 -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( p pCnt 0 ) <_ ( p pCnt B ) ) ) | 
						
							| 7 | 6 | ralbidv |  |-  ( A = 0 -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) <-> A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) ) | 
						
							| 8 |  | breq1 |  |-  ( A = 0 -> ( A || B <-> 0 || B ) ) | 
						
							| 9 | 7 8 | imbi12d |  |-  ( A = 0 -> ( ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) <-> ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) ) | 
						
							| 10 |  | gcddvds |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) | 
						
							| 11 | 10 | simpld |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || A ) | 
						
							| 12 |  | gcdcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) | 
						
							| 13 | 12 | nn0zd |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) | 
						
							| 14 |  | simpl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) | 
						
							| 15 |  | dvdsabsb |  |-  ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A gcd B ) || ( abs ` A ) ) ) | 
						
							| 16 | 13 14 15 | syl2anc |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> ( A gcd B ) || ( abs ` A ) ) ) | 
						
							| 17 | 11 16 | mpbid |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || ( abs ` A ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) || ( abs ` A ) ) | 
						
							| 19 |  | simpl |  |-  ( ( A = 0 /\ B = 0 ) -> A = 0 ) | 
						
							| 20 | 19 | necon3ai |  |-  ( A =/= 0 -> -. ( A = 0 /\ B = 0 ) ) | 
						
							| 21 |  | gcdn0cl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) | 
						
							| 22 | 20 21 | sylan2 |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. NN ) | 
						
							| 23 | 22 | nnzd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. ZZ ) | 
						
							| 24 | 22 | nnne0d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) =/= 0 ) | 
						
							| 25 |  | nnabscl |  |-  ( ( A e. ZZ /\ A =/= 0 ) -> ( abs ` A ) e. NN ) | 
						
							| 26 | 25 | adantlr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. NN ) | 
						
							| 27 | 26 | nnzd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. ZZ ) | 
						
							| 28 |  | dvdsval2 |  |-  ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ ( abs ` A ) e. ZZ ) -> ( ( A gcd B ) || ( abs ` A ) <-> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) ) | 
						
							| 29 | 23 24 27 28 | syl3anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) || ( abs ` A ) <-> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) ) | 
						
							| 30 | 18 29 | mpbid |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) | 
						
							| 31 |  | nnre |  |-  ( ( abs ` A ) e. NN -> ( abs ` A ) e. RR ) | 
						
							| 32 |  | nngt0 |  |-  ( ( abs ` A ) e. NN -> 0 < ( abs ` A ) ) | 
						
							| 33 | 31 32 | jca |  |-  ( ( abs ` A ) e. NN -> ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) | 
						
							| 34 |  | nnre |  |-  ( ( A gcd B ) e. NN -> ( A gcd B ) e. RR ) | 
						
							| 35 |  | nngt0 |  |-  ( ( A gcd B ) e. NN -> 0 < ( A gcd B ) ) | 
						
							| 36 | 34 35 | jca |  |-  ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) ) | 
						
							| 37 |  | divgt0 |  |-  ( ( ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) /\ ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) | 
						
							| 38 | 33 36 37 | syl2an |  |-  ( ( ( abs ` A ) e. NN /\ ( A gcd B ) e. NN ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) | 
						
							| 39 | 26 22 38 | syl2anc |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) | 
						
							| 40 |  | elnnz |  |-  ( ( ( abs ` A ) / ( A gcd B ) ) e. NN <-> ( ( ( abs ` A ) / ( A gcd B ) ) e. ZZ /\ 0 < ( ( abs ` A ) / ( A gcd B ) ) ) ) | 
						
							| 41 | 30 39 40 | sylanbrc |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( abs ` A ) / ( A gcd B ) ) e. NN ) | 
						
							| 42 |  | elnn1uz2 |  |-  ( ( ( abs ` A ) / ( A gcd B ) ) e. NN <-> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 43 | 41 42 | sylib |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 44 | 10 | simprd |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || B ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) || B ) | 
						
							| 46 |  | breq1 |  |-  ( ( A gcd B ) = ( abs ` A ) -> ( ( A gcd B ) || B <-> ( abs ` A ) || B ) ) | 
						
							| 47 | 45 46 | syl5ibcom |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) = ( abs ` A ) -> ( abs ` A ) || B ) ) | 
						
							| 48 | 26 | nncnd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) | 
						
							| 49 | 22 | nncnd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. CC ) | 
						
							| 50 |  | 1cnd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> 1 e. CC ) | 
						
							| 51 | 48 49 50 24 | divmuld |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 <-> ( ( A gcd B ) x. 1 ) = ( abs ` A ) ) ) | 
						
							| 52 | 49 | mulridd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) x. 1 ) = ( A gcd B ) ) | 
						
							| 53 | 52 | eqeq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( A gcd B ) x. 1 ) = ( abs ` A ) <-> ( A gcd B ) = ( abs ` A ) ) ) | 
						
							| 54 | 51 53 | bitrd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 <-> ( A gcd B ) = ( abs ` A ) ) ) | 
						
							| 55 |  | absdvdsb |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> ( abs ` A ) || B ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A || B <-> ( abs ` A ) || B ) ) | 
						
							| 57 | 47 54 56 | 3imtr4d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 -> A || B ) ) | 
						
							| 58 |  | exprmfct |  |-  ( ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) ) | 
						
							| 59 |  | simprl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> p e. Prime ) | 
						
							| 60 | 26 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. NN ) | 
						
							| 61 | 60 | nnzd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. ZZ ) | 
						
							| 62 | 60 | nnne0d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) =/= 0 ) | 
						
							| 63 | 22 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( A gcd B ) e. NN ) | 
						
							| 64 |  | pcdiv |  |-  ( ( p e. Prime /\ ( ( abs ` A ) e. ZZ /\ ( abs ` A ) =/= 0 ) /\ ( A gcd B ) e. NN ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) ) | 
						
							| 65 | 59 61 62 63 64 | syl121anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) ) | 
						
							| 66 |  | simplll |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A e. ZZ ) | 
						
							| 67 |  | zq |  |-  ( A e. ZZ -> A e. QQ ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A e. QQ ) | 
						
							| 69 |  | pcabs |  |-  ( ( p e. Prime /\ A e. QQ ) -> ( p pCnt ( abs ` A ) ) = ( p pCnt A ) ) | 
						
							| 70 | 59 68 69 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( abs ` A ) ) = ( p pCnt A ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) = ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) ) | 
						
							| 72 | 65 71 | eqtrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) ) | 
						
							| 73 |  | simprr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> p || ( ( abs ` A ) / ( A gcd B ) ) ) | 
						
							| 74 | 41 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd B ) ) e. NN ) | 
						
							| 75 |  | pcelnn |  |-  ( ( p e. Prime /\ ( ( abs ` A ) / ( A gcd B ) ) e. NN ) -> ( ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN <-> p || ( ( abs ` A ) / ( A gcd B ) ) ) ) | 
						
							| 76 | 59 74 75 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN <-> p || ( ( abs ` A ) / ( A gcd B ) ) ) ) | 
						
							| 77 | 73 76 | mpbird |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN ) | 
						
							| 78 | 72 77 | eqeltrrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) | 
						
							| 79 | 59 63 | pccld |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. NN0 ) | 
						
							| 80 | 79 | nn0zd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. ZZ ) | 
						
							| 81 |  | simplr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A =/= 0 ) | 
						
							| 82 |  | pczcl |  |-  ( ( p e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( p pCnt A ) e. NN0 ) | 
						
							| 83 | 59 66 81 82 | syl12anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. NN0 ) | 
						
							| 84 | 83 | nn0zd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. ZZ ) | 
						
							| 85 |  | znnsub |  |-  ( ( ( p pCnt ( A gcd B ) ) e. ZZ /\ ( p pCnt A ) e. ZZ ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) ) | 
						
							| 86 | 80 84 85 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) ) | 
						
							| 87 | 78 86 | mpbird |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) < ( p pCnt A ) ) | 
						
							| 88 | 79 | nn0red |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. RR ) | 
						
							| 89 | 83 | nn0red |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. RR ) | 
						
							| 90 | 88 89 | ltnled |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> -. ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) ) | 
						
							| 91 | 87 90 | mpbid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) | 
						
							| 92 |  | simpllr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> B e. ZZ ) | 
						
							| 93 |  | nprmdvds1 |  |-  ( p e. Prime -> -. p || 1 ) | 
						
							| 94 | 93 | ad2antrl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. p || 1 ) | 
						
							| 95 |  | gcdid0 |  |-  ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) | 
						
							| 96 | 66 95 | syl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( A gcd 0 ) = ( abs ` A ) ) | 
						
							| 97 | 96 | oveq2d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd 0 ) ) = ( ( abs ` A ) / ( abs ` A ) ) ) | 
						
							| 98 | 48 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. CC ) | 
						
							| 99 | 98 62 | dividd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( abs ` A ) ) = 1 ) | 
						
							| 100 | 97 99 | eqtrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd 0 ) ) = 1 ) | 
						
							| 101 | 100 | breq2d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p || ( ( abs ` A ) / ( A gcd 0 ) ) <-> p || 1 ) ) | 
						
							| 102 | 94 101 | mtbird |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. p || ( ( abs ` A ) / ( A gcd 0 ) ) ) | 
						
							| 103 |  | oveq2 |  |-  ( B = 0 -> ( A gcd B ) = ( A gcd 0 ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( B = 0 -> ( ( abs ` A ) / ( A gcd B ) ) = ( ( abs ` A ) / ( A gcd 0 ) ) ) | 
						
							| 105 | 104 | breq2d |  |-  ( B = 0 -> ( p || ( ( abs ` A ) / ( A gcd B ) ) <-> p || ( ( abs ` A ) / ( A gcd 0 ) ) ) ) | 
						
							| 106 | 73 105 | syl5ibcom |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( B = 0 -> p || ( ( abs ` A ) / ( A gcd 0 ) ) ) ) | 
						
							| 107 | 106 | necon3bd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( -. p || ( ( abs ` A ) / ( A gcd 0 ) ) -> B =/= 0 ) ) | 
						
							| 108 | 102 107 | mpd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> B =/= 0 ) | 
						
							| 109 |  | pczcl |  |-  ( ( p e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. NN0 ) | 
						
							| 110 | 59 92 108 109 | syl12anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt B ) e. NN0 ) | 
						
							| 111 | 110 | nn0red |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt B ) e. RR ) | 
						
							| 112 |  | lemin |  |-  ( ( ( p pCnt A ) e. RR /\ ( p pCnt A ) e. RR /\ ( p pCnt B ) e. RR ) -> ( ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) | 
						
							| 113 | 89 89 111 112 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) | 
						
							| 114 |  | pcgcd |  |-  ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) | 
						
							| 115 | 59 66 92 114 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) | 
						
							| 116 | 115 | breq2d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) <-> ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) ) | 
						
							| 117 | 89 | leidd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) <_ ( p pCnt A ) ) | 
						
							| 118 | 117 | biantrurd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) | 
						
							| 119 | 113 116 118 | 3bitr4rd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) ) | 
						
							| 120 | 91 119 | mtbird |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. ( p pCnt A ) <_ ( p pCnt B ) ) | 
						
							| 121 | 120 | expr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p || ( ( abs ` A ) / ( A gcd B ) ) -> -. ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 122 | 121 | reximdva |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) -> E. p e. Prime -. ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 123 |  | rexnal |  |-  ( E. p e. Prime -. ( p pCnt A ) <_ ( p pCnt B ) <-> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) | 
						
							| 124 | 122 123 | imbitrdi |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 125 | 58 124 | syl5 |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 126 | 57 125 | orim12d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) -> ( A || B \/ -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) ) | 
						
							| 127 | 43 126 | mpd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A || B \/ -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 128 | 127 | ord |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( -. A || B -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) | 
						
							| 129 | 128 | con4d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) ) | 
						
							| 130 |  | 2prm |  |-  2 e. Prime | 
						
							| 131 | 130 | ne0ii |  |-  Prime =/= (/) | 
						
							| 132 |  | r19.2z |  |-  ( ( Prime =/= (/) /\ A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) -> E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) | 
						
							| 133 | 131 132 | mpan |  |-  ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) | 
						
							| 134 |  | id |  |-  ( p e. Prime -> p e. Prime ) | 
						
							| 135 |  | zq |  |-  ( B e. ZZ -> B e. QQ ) | 
						
							| 136 | 135 | adantl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> B e. QQ ) | 
						
							| 137 |  | pcxcl |  |-  ( ( p e. Prime /\ B e. QQ ) -> ( p pCnt B ) e. RR* ) | 
						
							| 138 | 134 136 137 | syl2anr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt B ) e. RR* ) | 
						
							| 139 |  | pnfge |  |-  ( ( p pCnt B ) e. RR* -> ( p pCnt B ) <_ +oo ) | 
						
							| 140 | 138 139 | syl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt B ) <_ +oo ) | 
						
							| 141 | 140 | biantrurd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( +oo <_ ( p pCnt B ) <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) | 
						
							| 142 |  | pc0 |  |-  ( p e. Prime -> ( p pCnt 0 ) = +oo ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt 0 ) = +oo ) | 
						
							| 144 | 143 | breq1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) <-> +oo <_ ( p pCnt B ) ) ) | 
						
							| 145 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 146 |  | xrletri3 |  |-  ( ( ( p pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( p pCnt B ) = +oo <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) | 
						
							| 147 | 138 145 146 | sylancl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt B ) = +oo <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) | 
						
							| 148 | 141 144 147 | 3bitr4d |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) <-> ( p pCnt B ) = +oo ) ) | 
						
							| 149 |  | pnfnre |  |-  +oo e/ RR | 
						
							| 150 | 149 | neli |  |-  -. +oo e. RR | 
						
							| 151 |  | eleq1 |  |-  ( ( p pCnt B ) = +oo -> ( ( p pCnt B ) e. RR <-> +oo e. RR ) ) | 
						
							| 152 | 150 151 | mtbiri |  |-  ( ( p pCnt B ) = +oo -> -. ( p pCnt B ) e. RR ) | 
						
							| 153 | 109 | nn0red |  |-  ( ( p e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) | 
						
							| 154 | 153 | adantll |  |-  ( ( ( A e. ZZ /\ p e. Prime ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) | 
						
							| 155 | 154 | an4s |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( p e. Prime /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) | 
						
							| 156 | 155 | expr |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( B =/= 0 -> ( p pCnt B ) e. RR ) ) | 
						
							| 157 | 156 | necon1bd |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( -. ( p pCnt B ) e. RR -> B = 0 ) ) | 
						
							| 158 | 152 157 | syl5 |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt B ) = +oo -> B = 0 ) ) | 
						
							| 159 | 148 158 | sylbid |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) -> B = 0 ) ) | 
						
							| 160 | 159 | rexlimdva |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> B = 0 ) ) | 
						
							| 161 |  | 0dvds |  |-  ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) | 
						
							| 162 | 161 | adantl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 || B <-> B = 0 ) ) | 
						
							| 163 | 160 162 | sylibrd |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) | 
						
							| 164 | 133 163 | syl5 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) | 
						
							| 165 | 9 129 164 | pm2.61ne |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) ) | 
						
							| 166 | 4 165 | impbid |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |