| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pcadd.1 |  |-  ( ph -> P e. Prime ) | 
						
							| 2 |  | pcadd.2 |  |-  ( ph -> A e. QQ ) | 
						
							| 3 |  | pcadd.3 |  |-  ( ph -> B e. QQ ) | 
						
							| 4 |  | pcadd.4 |  |-  ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) | 
						
							| 5 |  | elq |  |-  ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) | 
						
							| 6 | 2 5 | sylib |  |-  ( ph -> E. x e. ZZ E. y e. NN A = ( x / y ) ) | 
						
							| 7 |  | elq |  |-  ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) ) | 
						
							| 8 | 3 7 | sylib |  |-  ( ph -> E. z e. ZZ E. w e. NN B = ( z / w ) ) | 
						
							| 9 |  | pcxcl |  |-  ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) | 
						
							| 10 | 1 2 9 | syl2anc |  |-  ( ph -> ( P pCnt A ) e. RR* ) | 
						
							| 11 | 10 | xrleidd |  |-  ( ph -> ( P pCnt A ) <_ ( P pCnt A ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt A ) ) | 
						
							| 13 |  | oveq2 |  |-  ( B = 0 -> ( A + B ) = ( A + 0 ) ) | 
						
							| 14 |  | qcn |  |-  ( A e. QQ -> A e. CC ) | 
						
							| 15 | 2 14 | syl |  |-  ( ph -> A e. CC ) | 
						
							| 16 | 15 | addridd |  |-  ( ph -> ( A + 0 ) = A ) | 
						
							| 17 | 13 16 | sylan9eqr |  |-  ( ( ph /\ B = 0 ) -> ( A + B ) = A ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ph /\ B = 0 ) -> ( P pCnt ( A + B ) ) = ( P pCnt A ) ) | 
						
							| 19 | 12 18 | breqtrrd |  |-  ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) | 
						
							| 20 | 19 | a1d |  |-  ( ( ph /\ B = 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 21 |  | reeanv |  |-  ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) ) | 
						
							| 22 |  | reeanv |  |-  ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) ) | 
						
							| 23 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. Prime ) | 
						
							| 24 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. NN ) | 
						
							| 26 |  | simplrl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. ZZ ) | 
						
							| 27 |  | simprrl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( x / y ) ) | 
						
							| 28 |  | pc0 |  |-  ( P e. Prime -> ( P pCnt 0 ) = +oo ) | 
						
							| 29 | 23 28 | syl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt 0 ) = +oo ) | 
						
							| 30 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. QQ ) | 
						
							| 31 |  | simpllr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B =/= 0 ) | 
						
							| 32 |  | pcqcl |  |-  ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) | 
						
							| 33 | 23 30 31 32 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ZZ ) | 
						
							| 34 | 33 | zred |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. RR ) | 
						
							| 35 |  | ltpnf |  |-  ( ( P pCnt B ) e. RR -> ( P pCnt B ) < +oo ) | 
						
							| 36 |  | rexr |  |-  ( ( P pCnt B ) e. RR -> ( P pCnt B ) e. RR* ) | 
						
							| 37 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 38 |  | xrltnle |  |-  ( ( ( P pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) | 
						
							| 39 | 36 37 38 | sylancl |  |-  ( ( P pCnt B ) e. RR -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) | 
						
							| 40 | 35 39 | mpbid |  |-  ( ( P pCnt B ) e. RR -> -. +oo <_ ( P pCnt B ) ) | 
						
							| 41 | 34 40 | syl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. +oo <_ ( P pCnt B ) ) | 
						
							| 42 | 29 41 | eqnbrtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. ( P pCnt 0 ) <_ ( P pCnt B ) ) | 
						
							| 43 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) | 
						
							| 44 |  | oveq2 |  |-  ( A = 0 -> ( P pCnt A ) = ( P pCnt 0 ) ) | 
						
							| 45 | 44 | breq1d |  |-  ( A = 0 -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) | 
						
							| 46 | 43 45 | syl5ibcom |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A = 0 -> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) | 
						
							| 47 | 46 | necon3bd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( -. ( P pCnt 0 ) <_ ( P pCnt B ) -> A =/= 0 ) ) | 
						
							| 48 | 42 47 | mpd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A =/= 0 ) | 
						
							| 49 | 27 48 | eqnetrrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / y ) =/= 0 ) | 
						
							| 50 |  | simprll |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. NN ) | 
						
							| 51 | 50 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. CC ) | 
						
							| 52 | 50 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y =/= 0 ) | 
						
							| 53 | 51 52 | div0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / y ) = 0 ) | 
						
							| 54 |  | oveq1 |  |-  ( x = 0 -> ( x / y ) = ( 0 / y ) ) | 
						
							| 55 | 54 | eqeq1d |  |-  ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) | 
						
							| 56 | 53 55 | syl5ibrcom |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) | 
						
							| 57 | 56 | necon3d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) | 
						
							| 58 | 49 57 | mpd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x =/= 0 ) | 
						
							| 59 |  | pczcl |  |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) | 
						
							| 60 | 23 26 58 59 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. NN0 ) | 
						
							| 61 | 25 60 | nnexpcld |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. NN ) | 
						
							| 62 | 61 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. CC ) | 
						
							| 63 | 62 51 | mulcomd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) x. y ) = ( y x. ( P ^ ( P pCnt x ) ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) | 
						
							| 65 | 26 | zcnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. CC ) | 
						
							| 66 | 23 50 | pccld |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. NN0 ) | 
						
							| 67 | 25 66 | nnexpcld |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. NN ) | 
						
							| 68 | 67 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. CC ) | 
						
							| 69 | 61 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) =/= 0 ) | 
						
							| 70 | 67 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) =/= 0 ) | 
						
							| 71 | 65 62 51 68 69 70 52 | divdivdivd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) ) | 
						
							| 72 | 27 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) | 
						
							| 73 |  | pcdiv |  |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) | 
						
							| 74 | 23 26 58 50 73 | syl121anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) | 
						
							| 75 | 72 74 | eqtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) ) | 
						
							| 77 | 25 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. CC ) | 
						
							| 78 | 25 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P =/= 0 ) | 
						
							| 79 | 66 | nn0zd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. ZZ ) | 
						
							| 80 | 60 | nn0zd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. ZZ ) | 
						
							| 81 | 77 78 79 80 | expsubd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) | 
						
							| 82 | 76 81 | eqtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) | 
						
							| 84 | 27 | oveq1d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) | 
						
							| 85 | 65 51 62 68 52 70 69 | divdivdivd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) | 
						
							| 86 | 83 84 85 | 3eqtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) | 
						
							| 87 | 64 71 86 | 3eqtr4d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( A / ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) = ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 89 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. QQ ) | 
						
							| 90 | 89 14 | syl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. CC ) | 
						
							| 91 |  | pcqcl |  |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ ) | 
						
							| 92 | 23 89 48 91 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) e. ZZ ) | 
						
							| 93 | 77 78 92 | expclzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) e. CC ) | 
						
							| 94 | 77 78 92 | expne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) =/= 0 ) | 
						
							| 95 | 90 93 94 | divcan2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A ) | 
						
							| 96 | 88 95 | eqtr2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) ) | 
						
							| 97 |  | simplrr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. ZZ ) | 
						
							| 98 |  | simprrr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( z / w ) ) | 
						
							| 99 | 98 31 | eqnetrrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / w ) =/= 0 ) | 
						
							| 100 |  | simprlr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. NN ) | 
						
							| 101 | 100 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. CC ) | 
						
							| 102 | 100 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w =/= 0 ) | 
						
							| 103 | 101 102 | div0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / w ) = 0 ) | 
						
							| 104 |  | oveq1 |  |-  ( z = 0 -> ( z / w ) = ( 0 / w ) ) | 
						
							| 105 | 104 | eqeq1d |  |-  ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) ) | 
						
							| 106 | 103 105 | syl5ibrcom |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z = 0 -> ( z / w ) = 0 ) ) | 
						
							| 107 | 106 | necon3d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) ) | 
						
							| 108 | 99 107 | mpd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z =/= 0 ) | 
						
							| 109 |  | pczcl |  |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 ) | 
						
							| 110 | 23 97 108 109 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. NN0 ) | 
						
							| 111 | 25 110 | nnexpcld |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. NN ) | 
						
							| 112 | 111 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. CC ) | 
						
							| 113 | 112 101 | mulcomd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) x. w ) = ( w x. ( P ^ ( P pCnt z ) ) ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) | 
						
							| 115 | 97 | zcnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. CC ) | 
						
							| 116 | 23 100 | pccld |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. NN0 ) | 
						
							| 117 | 25 116 | nnexpcld |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. NN ) | 
						
							| 118 | 117 | nncnd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. CC ) | 
						
							| 119 | 111 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) =/= 0 ) | 
						
							| 120 | 117 | nnne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) =/= 0 ) | 
						
							| 121 | 115 112 101 118 119 120 102 | divdivdivd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) ) | 
						
							| 122 | 98 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) ) | 
						
							| 123 |  | pcdiv |  |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) | 
						
							| 124 | 23 97 108 100 123 | syl121anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) | 
						
							| 125 | 122 124 | eqtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) | 
						
							| 126 | 125 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) ) | 
						
							| 127 | 116 | nn0zd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. ZZ ) | 
						
							| 128 | 110 | nn0zd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. ZZ ) | 
						
							| 129 | 77 78 127 128 | expsubd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) | 
						
							| 130 | 126 129 | eqtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) | 
						
							| 132 | 98 | oveq1d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) | 
						
							| 133 | 115 101 112 118 102 120 119 | divdivdivd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) | 
						
							| 134 | 131 132 133 | 3eqtrd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) | 
						
							| 135 | 114 121 134 | 3eqtr4d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( B / ( P ^ ( P pCnt B ) ) ) ) | 
						
							| 136 | 135 | oveq2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) = ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) ) | 
						
							| 137 |  | qcn |  |-  ( B e. QQ -> B e. CC ) | 
						
							| 138 | 30 137 | syl |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. CC ) | 
						
							| 139 | 77 78 33 | expclzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) e. CC ) | 
						
							| 140 | 77 78 33 | expne0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) =/= 0 ) | 
						
							| 141 | 138 139 140 | divcan2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) = B ) | 
						
							| 142 | 136 141 | eqtr2d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) ) | 
						
							| 143 |  | eluz |  |-  ( ( ( P pCnt A ) e. ZZ /\ ( P pCnt B ) e. ZZ ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) | 
						
							| 144 | 92 33 143 | syl2anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) | 
						
							| 145 | 43 144 | mpbird |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) ) | 
						
							| 146 |  | pczdvds |  |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P ^ ( P pCnt x ) ) || x ) | 
						
							| 147 | 23 26 58 146 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) || x ) | 
						
							| 148 | 61 | nnzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. ZZ ) | 
						
							| 149 |  | dvdsval2 |  |-  ( ( ( P ^ ( P pCnt x ) ) e. ZZ /\ ( P ^ ( P pCnt x ) ) =/= 0 /\ x e. ZZ ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) | 
						
							| 150 | 148 69 26 149 | syl3anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) | 
						
							| 151 | 147 150 | mpbid |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) | 
						
							| 152 |  | pczndvds2 |  |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) | 
						
							| 153 | 23 26 58 152 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) | 
						
							| 154 | 151 153 | jca |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ /\ -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) ) | 
						
							| 155 |  | pcdvds |  |-  ( ( P e. Prime /\ y e. NN ) -> ( P ^ ( P pCnt y ) ) || y ) | 
						
							| 156 | 23 50 155 | syl2anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) || y ) | 
						
							| 157 | 67 | nnzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. ZZ ) | 
						
							| 158 | 50 | nnzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. ZZ ) | 
						
							| 159 |  | dvdsval2 |  |-  ( ( ( P ^ ( P pCnt y ) ) e. ZZ /\ ( P ^ ( P pCnt y ) ) =/= 0 /\ y e. ZZ ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) | 
						
							| 160 | 157 70 158 159 | syl3anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) | 
						
							| 161 | 156 160 | mpbid |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) | 
						
							| 162 | 50 | nnred |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. RR ) | 
						
							| 163 | 67 | nnred |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. RR ) | 
						
							| 164 | 50 | nngt0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < y ) | 
						
							| 165 | 67 | nngt0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt y ) ) ) | 
						
							| 166 | 162 163 164 165 | divgt0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) | 
						
							| 167 |  | elnnz |  |-  ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN <-> ( ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ /\ 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) ) | 
						
							| 168 | 161 166 167 | sylanbrc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. NN ) | 
						
							| 169 |  | pcndvds2 |  |-  ( ( P e. Prime /\ y e. NN ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) | 
						
							| 170 | 23 50 169 | syl2anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) | 
						
							| 171 | 168 170 | jca |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN /\ -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) ) | 
						
							| 172 |  | pczdvds |  |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P ^ ( P pCnt z ) ) || z ) | 
						
							| 173 | 23 97 108 172 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) || z ) | 
						
							| 174 | 111 | nnzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. ZZ ) | 
						
							| 175 |  | dvdsval2 |  |-  ( ( ( P ^ ( P pCnt z ) ) e. ZZ /\ ( P ^ ( P pCnt z ) ) =/= 0 /\ z e. ZZ ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) | 
						
							| 176 | 174 119 97 175 | syl3anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) | 
						
							| 177 | 173 176 | mpbid |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) | 
						
							| 178 |  | pczndvds2 |  |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) | 
						
							| 179 | 23 97 108 178 | syl12anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) | 
						
							| 180 | 177 179 | jca |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ /\ -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) ) | 
						
							| 181 |  | pcdvds |  |-  ( ( P e. Prime /\ w e. NN ) -> ( P ^ ( P pCnt w ) ) || w ) | 
						
							| 182 | 23 100 181 | syl2anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) || w ) | 
						
							| 183 | 117 | nnzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. ZZ ) | 
						
							| 184 | 100 | nnzd |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. ZZ ) | 
						
							| 185 |  | dvdsval2 |  |-  ( ( ( P ^ ( P pCnt w ) ) e. ZZ /\ ( P ^ ( P pCnt w ) ) =/= 0 /\ w e. ZZ ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) | 
						
							| 186 | 183 120 184 185 | syl3anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) | 
						
							| 187 | 182 186 | mpbid |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) | 
						
							| 188 | 100 | nnred |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. RR ) | 
						
							| 189 | 117 | nnred |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. RR ) | 
						
							| 190 | 100 | nngt0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < w ) | 
						
							| 191 | 117 | nngt0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt w ) ) ) | 
						
							| 192 | 188 189 190 191 | divgt0d |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) | 
						
							| 193 |  | elnnz |  |-  ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN <-> ( ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ /\ 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) ) | 
						
							| 194 | 187 192 193 | sylanbrc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. NN ) | 
						
							| 195 |  | pcndvds2 |  |-  ( ( P e. Prime /\ w e. NN ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) | 
						
							| 196 | 23 100 195 | syl2anc |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) | 
						
							| 197 | 194 196 | jca |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN /\ -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) ) | 
						
							| 198 | 23 96 142 145 154 171 180 197 | pcaddlem |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) | 
						
							| 199 | 198 | expr |  |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 200 | 199 | rexlimdvva |  |-  ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 201 | 22 200 | biimtrrid |  |-  ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 202 | 201 | rexlimdvva |  |-  ( ( ph /\ B =/= 0 ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 203 | 21 202 | biimtrrid |  |-  ( ( ph /\ B =/= 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 204 | 20 203 | pm2.61dane |  |-  ( ph -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) | 
						
							| 205 | 6 8 204 | mp2and |  |-  ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |