| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pcadd.1 | 
							 |-  ( ph -> P e. Prime )  | 
						
						
							| 2 | 
							
								
							 | 
							pcadd.2 | 
							 |-  ( ph -> A e. QQ )  | 
						
						
							| 3 | 
							
								
							 | 
							pcadd.3 | 
							 |-  ( ph -> B e. QQ )  | 
						
						
							| 4 | 
							
								
							 | 
							pcadd.4 | 
							 |-  ( ph -> ( P pCnt A ) <_ ( P pCnt B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elq | 
							 |-  ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							sylib | 
							 |-  ( ph -> E. x e. ZZ E. y e. NN A = ( x / y ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elq | 
							 |-  ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							sylib | 
							 |-  ( ph -> E. z e. ZZ E. w e. NN B = ( z / w ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pcxcl | 
							 |-  ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* )  | 
						
						
							| 10 | 
							
								1 2 9
							 | 
							syl2anc | 
							 |-  ( ph -> ( P pCnt A ) e. RR* )  | 
						
						
							| 11 | 
							
								10
							 | 
							xrleidd | 
							 |-  ( ph -> ( P pCnt A ) <_ ( P pCnt A ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt A ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = 0 -> ( A + B ) = ( A + 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							qcn | 
							 |-  ( A e. QQ -> A e. CC )  | 
						
						
							| 15 | 
							
								2 14
							 | 
							syl | 
							 |-  ( ph -> A e. CC )  | 
						
						
							| 16 | 
							
								15
							 | 
							addridd | 
							 |-  ( ph -> ( A + 0 ) = A )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							sylan9eqr | 
							 |-  ( ( ph /\ B = 0 ) -> ( A + B ) = A )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							 |-  ( ( ph /\ B = 0 ) -> ( P pCnt ( A + B ) ) = ( P pCnt A ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1d | 
							 |-  ( ( ph /\ B = 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							reeanv | 
							 |-  ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							reeanv | 
							 |-  ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. Prime )  | 
						
						
							| 24 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. NN )  | 
						
						
							| 26 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. ZZ )  | 
						
						
							| 27 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( x / y ) )  | 
						
						
							| 28 | 
							
								
							 | 
							pc0 | 
							 |-  ( P e. Prime -> ( P pCnt 0 ) = +oo )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt 0 ) = +oo )  | 
						
						
							| 30 | 
							
								3
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. QQ )  | 
						
						
							| 31 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B =/= 0 )  | 
						
						
							| 32 | 
							
								
							 | 
							pcqcl | 
							 |-  ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ )  | 
						
						
							| 33 | 
							
								23 30 31 32
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ZZ )  | 
						
						
							| 34 | 
							
								33
							 | 
							zred | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. RR )  | 
						
						
							| 35 | 
							
								
							 | 
							ltpnf | 
							 |-  ( ( P pCnt B ) e. RR -> ( P pCnt B ) < +oo )  | 
						
						
							| 36 | 
							
								
							 | 
							rexr | 
							 |-  ( ( P pCnt B ) e. RR -> ( P pCnt B ) e. RR* )  | 
						
						
							| 37 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 38 | 
							
								
							 | 
							xrltnle | 
							 |-  ( ( ( P pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) )  | 
						
						
							| 39 | 
							
								36 37 38
							 | 
							sylancl | 
							 |-  ( ( P pCnt B ) e. RR -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) )  | 
						
						
							| 40 | 
							
								35 39
							 | 
							mpbid | 
							 |-  ( ( P pCnt B ) e. RR -> -. +oo <_ ( P pCnt B ) )  | 
						
						
							| 41 | 
							
								34 40
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. +oo <_ ( P pCnt B ) )  | 
						
						
							| 42 | 
							
								29 41
							 | 
							eqnbrtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. ( P pCnt 0 ) <_ ( P pCnt B ) )  | 
						
						
							| 43 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt B ) )  | 
						
						
							| 44 | 
							
								
							 | 
							oveq2 | 
							 |-  ( A = 0 -> ( P pCnt A ) = ( P pCnt 0 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							breq1d | 
							 |-  ( A = 0 -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P pCnt 0 ) <_ ( P pCnt B ) ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							syl5ibcom | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A = 0 -> ( P pCnt 0 ) <_ ( P pCnt B ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							necon3bd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( -. ( P pCnt 0 ) <_ ( P pCnt B ) -> A =/= 0 ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A =/= 0 )  | 
						
						
							| 49 | 
							
								27 48
							 | 
							eqnetrrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / y ) =/= 0 )  | 
						
						
							| 50 | 
							
								
							 | 
							simprll | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. NN )  | 
						
						
							| 51 | 
							
								50
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. CC )  | 
						
						
							| 52 | 
							
								50
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y =/= 0 )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							div0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / y ) = 0 )  | 
						
						
							| 54 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = 0 -> ( x / y ) = ( 0 / y ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							eqeq1d | 
							 |-  ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) )  | 
						
						
							| 56 | 
							
								53 55
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x = 0 -> ( x / y ) = 0 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							necon3d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) )  | 
						
						
							| 58 | 
							
								49 57
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x =/= 0 )  | 
						
						
							| 59 | 
							
								
							 | 
							pczcl | 
							 |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 )  | 
						
						
							| 60 | 
							
								23 26 58 59
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. NN0 )  | 
						
						
							| 61 | 
							
								25 60
							 | 
							nnexpcld | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. NN )  | 
						
						
							| 62 | 
							
								61
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. CC )  | 
						
						
							| 63 | 
							
								62 51
							 | 
							mulcomd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) x. y ) = ( y x. ( P ^ ( P pCnt x ) ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) )  | 
						
						
							| 65 | 
							
								26
							 | 
							zcnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. CC )  | 
						
						
							| 66 | 
							
								23 50
							 | 
							pccld | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. NN0 )  | 
						
						
							| 67 | 
							
								25 66
							 | 
							nnexpcld | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. NN )  | 
						
						
							| 68 | 
							
								67
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. CC )  | 
						
						
							| 69 | 
							
								61
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) =/= 0 )  | 
						
						
							| 70 | 
							
								67
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) =/= 0 )  | 
						
						
							| 71 | 
							
								65 62 51 68 69 70 52
							 | 
							divdivdivd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) )  | 
						
						
							| 72 | 
							
								27
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							pcdiv | 
							 |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) )  | 
						
						
							| 74 | 
							
								23 26 58 50 73
							 | 
							syl121anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) )  | 
						
						
							| 75 | 
							
								72 74
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( ( P pCnt x ) - ( P pCnt y ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) )  | 
						
						
							| 77 | 
							
								25
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. CC )  | 
						
						
							| 78 | 
							
								25
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P =/= 0 )  | 
						
						
							| 79 | 
							
								66
							 | 
							nn0zd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. ZZ )  | 
						
						
							| 80 | 
							
								60
							 | 
							nn0zd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. ZZ )  | 
						
						
							| 81 | 
							
								77 78 79 80
							 | 
							expsubd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) )  | 
						
						
							| 82 | 
							
								76 81
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) )  | 
						
						
							| 84 | 
							
								27
							 | 
							oveq1d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) )  | 
						
						
							| 85 | 
							
								65 51 62 68 52 70 69
							 | 
							divdivdivd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) )  | 
						
						
							| 86 | 
							
								83 84 85
							 | 
							3eqtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) )  | 
						
						
							| 87 | 
							
								64 71 86
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( A / ( P ^ ( P pCnt A ) ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) = ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) )  | 
						
						
							| 89 | 
							
								2
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. QQ )  | 
						
						
							| 90 | 
							
								89 14
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. CC )  | 
						
						
							| 91 | 
							
								
							 | 
							pcqcl | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ )  | 
						
						
							| 92 | 
							
								23 89 48 91
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) e. ZZ )  | 
						
						
							| 93 | 
							
								77 78 92
							 | 
							expclzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) e. CC )  | 
						
						
							| 94 | 
							
								77 78 92
							 | 
							expne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) =/= 0 )  | 
						
						
							| 95 | 
							
								90 93 94
							 | 
							divcan2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A )  | 
						
						
							| 96 | 
							
								88 95
							 | 
							eqtr2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) )  | 
						
						
							| 97 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. ZZ )  | 
						
						
							| 98 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( z / w ) )  | 
						
						
							| 99 | 
							
								98 31
							 | 
							eqnetrrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / w ) =/= 0 )  | 
						
						
							| 100 | 
							
								
							 | 
							simprlr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. NN )  | 
						
						
							| 101 | 
							
								100
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. CC )  | 
						
						
							| 102 | 
							
								100
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w =/= 0 )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							div0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / w ) = 0 )  | 
						
						
							| 104 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = 0 -> ( z / w ) = ( 0 / w ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							eqeq1d | 
							 |-  ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) )  | 
						
						
							| 106 | 
							
								103 105
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z = 0 -> ( z / w ) = 0 ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							necon3d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) )  | 
						
						
							| 108 | 
							
								99 107
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z =/= 0 )  | 
						
						
							| 109 | 
							
								
							 | 
							pczcl | 
							 |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 )  | 
						
						
							| 110 | 
							
								23 97 108 109
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. NN0 )  | 
						
						
							| 111 | 
							
								25 110
							 | 
							nnexpcld | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. NN )  | 
						
						
							| 112 | 
							
								111
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. CC )  | 
						
						
							| 113 | 
							
								112 101
							 | 
							mulcomd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) x. w ) = ( w x. ( P ^ ( P pCnt z ) ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) )  | 
						
						
							| 115 | 
							
								97
							 | 
							zcnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. CC )  | 
						
						
							| 116 | 
							
								23 100
							 | 
							pccld | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. NN0 )  | 
						
						
							| 117 | 
							
								25 116
							 | 
							nnexpcld | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. NN )  | 
						
						
							| 118 | 
							
								117
							 | 
							nncnd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. CC )  | 
						
						
							| 119 | 
							
								111
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) =/= 0 )  | 
						
						
							| 120 | 
							
								117
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) =/= 0 )  | 
						
						
							| 121 | 
							
								115 112 101 118 119 120 102
							 | 
							divdivdivd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) )  | 
						
						
							| 122 | 
							
								98
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) )  | 
						
						
							| 123 | 
							
								
							 | 
							pcdiv | 
							 |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) )  | 
						
						
							| 124 | 
							
								23 97 108 100 123
							 | 
							syl121anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) )  | 
						
						
							| 125 | 
							
								122 124
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( ( P pCnt z ) - ( P pCnt w ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) )  | 
						
						
							| 127 | 
							
								116
							 | 
							nn0zd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. ZZ )  | 
						
						
							| 128 | 
							
								110
							 | 
							nn0zd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. ZZ )  | 
						
						
							| 129 | 
							
								77 78 127 128
							 | 
							expsubd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) )  | 
						
						
							| 130 | 
							
								126 129
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) )  | 
						
						
							| 132 | 
							
								98
							 | 
							oveq1d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) )  | 
						
						
							| 133 | 
							
								115 101 112 118 102 120 119
							 | 
							divdivdivd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) )  | 
						
						
							| 134 | 
							
								131 132 133
							 | 
							3eqtrd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) )  | 
						
						
							| 135 | 
							
								114 121 134
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( B / ( P ^ ( P pCnt B ) ) ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) = ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) )  | 
						
						
							| 137 | 
							
								
							 | 
							qcn | 
							 |-  ( B e. QQ -> B e. CC )  | 
						
						
							| 138 | 
							
								30 137
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. CC )  | 
						
						
							| 139 | 
							
								77 78 33
							 | 
							expclzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) e. CC )  | 
						
						
							| 140 | 
							
								77 78 33
							 | 
							expne0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) =/= 0 )  | 
						
						
							| 141 | 
							
								138 139 140
							 | 
							divcan2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) = B )  | 
						
						
							| 142 | 
							
								136 141
							 | 
							eqtr2d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) )  | 
						
						
							| 143 | 
							
								
							 | 
							eluz | 
							 |-  ( ( ( P pCnt A ) e. ZZ /\ ( P pCnt B ) e. ZZ ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) )  | 
						
						
							| 144 | 
							
								92 33 143
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) )  | 
						
						
							| 145 | 
							
								43 144
							 | 
							mpbird | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) )  | 
						
						
							| 146 | 
							
								
							 | 
							pczdvds | 
							 |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P ^ ( P pCnt x ) ) || x )  | 
						
						
							| 147 | 
							
								23 26 58 146
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) || x )  | 
						
						
							| 148 | 
							
								61
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. ZZ )  | 
						
						
							| 149 | 
							
								
							 | 
							dvdsval2 | 
							 |-  ( ( ( P ^ ( P pCnt x ) ) e. ZZ /\ ( P ^ ( P pCnt x ) ) =/= 0 /\ x e. ZZ ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) )  | 
						
						
							| 150 | 
							
								148 69 26 149
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) )  | 
						
						
							| 151 | 
							
								147 150
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ )  | 
						
						
							| 152 | 
							
								
							 | 
							pczndvds2 | 
							 |-  ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) )  | 
						
						
							| 153 | 
							
								23 26 58 152
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) )  | 
						
						
							| 154 | 
							
								151 153
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ /\ -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) )  | 
						
						
							| 155 | 
							
								
							 | 
							pcdvds | 
							 |-  ( ( P e. Prime /\ y e. NN ) -> ( P ^ ( P pCnt y ) ) || y )  | 
						
						
							| 156 | 
							
								23 50 155
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) || y )  | 
						
						
							| 157 | 
							
								67
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. ZZ )  | 
						
						
							| 158 | 
							
								50
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. ZZ )  | 
						
						
							| 159 | 
							
								
							 | 
							dvdsval2 | 
							 |-  ( ( ( P ^ ( P pCnt y ) ) e. ZZ /\ ( P ^ ( P pCnt y ) ) =/= 0 /\ y e. ZZ ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) )  | 
						
						
							| 160 | 
							
								157 70 158 159
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) )  | 
						
						
							| 161 | 
							
								156 160
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ )  | 
						
						
							| 162 | 
							
								50
							 | 
							nnred | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. RR )  | 
						
						
							| 163 | 
							
								67
							 | 
							nnred | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. RR )  | 
						
						
							| 164 | 
							
								50
							 | 
							nngt0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < y )  | 
						
						
							| 165 | 
							
								67
							 | 
							nngt0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt y ) ) )  | 
						
						
							| 166 | 
							
								162 163 164 165
							 | 
							divgt0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( y / ( P ^ ( P pCnt y ) ) ) )  | 
						
						
							| 167 | 
							
								
							 | 
							elnnz | 
							 |-  ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN <-> ( ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ /\ 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) )  | 
						
						
							| 168 | 
							
								161 166 167
							 | 
							sylanbrc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. NN )  | 
						
						
							| 169 | 
							
								
							 | 
							pcndvds2 | 
							 |-  ( ( P e. Prime /\ y e. NN ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) )  | 
						
						
							| 170 | 
							
								23 50 169
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) )  | 
						
						
							| 171 | 
							
								168 170
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN /\ -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) )  | 
						
						
							| 172 | 
							
								
							 | 
							pczdvds | 
							 |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P ^ ( P pCnt z ) ) || z )  | 
						
						
							| 173 | 
							
								23 97 108 172
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) || z )  | 
						
						
							| 174 | 
							
								111
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. ZZ )  | 
						
						
							| 175 | 
							
								
							 | 
							dvdsval2 | 
							 |-  ( ( ( P ^ ( P pCnt z ) ) e. ZZ /\ ( P ^ ( P pCnt z ) ) =/= 0 /\ z e. ZZ ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) )  | 
						
						
							| 176 | 
							
								174 119 97 175
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) )  | 
						
						
							| 177 | 
							
								173 176
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ )  | 
						
						
							| 178 | 
							
								
							 | 
							pczndvds2 | 
							 |-  ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) )  | 
						
						
							| 179 | 
							
								23 97 108 178
							 | 
							syl12anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) )  | 
						
						
							| 180 | 
							
								177 179
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ /\ -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) )  | 
						
						
							| 181 | 
							
								
							 | 
							pcdvds | 
							 |-  ( ( P e. Prime /\ w e. NN ) -> ( P ^ ( P pCnt w ) ) || w )  | 
						
						
							| 182 | 
							
								23 100 181
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) || w )  | 
						
						
							| 183 | 
							
								117
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. ZZ )  | 
						
						
							| 184 | 
							
								100
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. ZZ )  | 
						
						
							| 185 | 
							
								
							 | 
							dvdsval2 | 
							 |-  ( ( ( P ^ ( P pCnt w ) ) e. ZZ /\ ( P ^ ( P pCnt w ) ) =/= 0 /\ w e. ZZ ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) )  | 
						
						
							| 186 | 
							
								183 120 184 185
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) )  | 
						
						
							| 187 | 
							
								182 186
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ )  | 
						
						
							| 188 | 
							
								100
							 | 
							nnred | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. RR )  | 
						
						
							| 189 | 
							
								117
							 | 
							nnred | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. RR )  | 
						
						
							| 190 | 
							
								100
							 | 
							nngt0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < w )  | 
						
						
							| 191 | 
							
								117
							 | 
							nngt0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt w ) ) )  | 
						
						
							| 192 | 
							
								188 189 190 191
							 | 
							divgt0d | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( w / ( P ^ ( P pCnt w ) ) ) )  | 
						
						
							| 193 | 
							
								
							 | 
							elnnz | 
							 |-  ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN <-> ( ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ /\ 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) )  | 
						
						
							| 194 | 
							
								187 192 193
							 | 
							sylanbrc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. NN )  | 
						
						
							| 195 | 
							
								
							 | 
							pcndvds2 | 
							 |-  ( ( P e. Prime /\ w e. NN ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) )  | 
						
						
							| 196 | 
							
								23 100 195
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) )  | 
						
						
							| 197 | 
							
								194 196
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN /\ -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) )  | 
						
						
							| 198 | 
							
								23 96 142 145 154 171 180 197
							 | 
							pcaddlem | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							expr | 
							 |-  ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 200 | 
							
								199
							 | 
							rexlimdvva | 
							 |-  ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 201 | 
							
								22 200
							 | 
							biimtrrid | 
							 |-  ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 202 | 
							
								201
							 | 
							rexlimdvva | 
							 |-  ( ( ph /\ B =/= 0 ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 203 | 
							
								21 202
							 | 
							biimtrrid | 
							 |-  ( ( ph /\ B =/= 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 204 | 
							
								20 203
							 | 
							pm2.61dane | 
							 |-  ( ph -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) )  | 
						
						
							| 205 | 
							
								6 8 204
							 | 
							mp2and | 
							 |-  ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) )  |