Step |
Hyp |
Ref |
Expression |
1 |
|
pcadd.1 |
|- ( ph -> P e. Prime ) |
2 |
|
pcadd.2 |
|- ( ph -> A e. QQ ) |
3 |
|
pcadd.3 |
|- ( ph -> B e. QQ ) |
4 |
|
pcadd.4 |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) |
5 |
|
elq |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
6 |
2 5
|
sylib |
|- ( ph -> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
7 |
|
elq |
|- ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
8 |
3 7
|
sylib |
|- ( ph -> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
9 |
|
pcxcl |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
10 |
1 2 9
|
syl2anc |
|- ( ph -> ( P pCnt A ) e. RR* ) |
11 |
10
|
xrleidd |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt A ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt A ) ) |
13 |
|
oveq2 |
|- ( B = 0 -> ( A + B ) = ( A + 0 ) ) |
14 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
15 |
2 14
|
syl |
|- ( ph -> A e. CC ) |
16 |
15
|
addid1d |
|- ( ph -> ( A + 0 ) = A ) |
17 |
13 16
|
sylan9eqr |
|- ( ( ph /\ B = 0 ) -> ( A + B ) = A ) |
18 |
17
|
oveq2d |
|- ( ( ph /\ B = 0 ) -> ( P pCnt ( A + B ) ) = ( P pCnt A ) ) |
19 |
12 18
|
breqtrrd |
|- ( ( ph /\ B = 0 ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
20 |
19
|
a1d |
|- ( ( ph /\ B = 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
21 |
|
reeanv |
|- ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) ) |
22 |
|
reeanv |
|- ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) ) |
23 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. Prime ) |
24 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
25 |
23 24
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. NN ) |
26 |
|
simplrl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. ZZ ) |
27 |
|
simprrl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( x / y ) ) |
28 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
29 |
23 28
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt 0 ) = +oo ) |
30 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. QQ ) |
31 |
|
simpllr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B =/= 0 ) |
32 |
|
pcqcl |
|- ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
33 |
23 30 31 32
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ZZ ) |
34 |
33
|
zred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. RR ) |
35 |
|
ltpnf |
|- ( ( P pCnt B ) e. RR -> ( P pCnt B ) < +oo ) |
36 |
|
rexr |
|- ( ( P pCnt B ) e. RR -> ( P pCnt B ) e. RR* ) |
37 |
|
pnfxr |
|- +oo e. RR* |
38 |
|
xrltnle |
|- ( ( ( P pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) |
39 |
36 37 38
|
sylancl |
|- ( ( P pCnt B ) e. RR -> ( ( P pCnt B ) < +oo <-> -. +oo <_ ( P pCnt B ) ) ) |
40 |
35 39
|
mpbid |
|- ( ( P pCnt B ) e. RR -> -. +oo <_ ( P pCnt B ) ) |
41 |
34 40
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. +oo <_ ( P pCnt B ) ) |
42 |
29 41
|
eqnbrtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. ( P pCnt 0 ) <_ ( P pCnt B ) ) |
43 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
44 |
|
oveq2 |
|- ( A = 0 -> ( P pCnt A ) = ( P pCnt 0 ) ) |
45 |
44
|
breq1d |
|- ( A = 0 -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) |
46 |
43 45
|
syl5ibcom |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A = 0 -> ( P pCnt 0 ) <_ ( P pCnt B ) ) ) |
47 |
46
|
necon3bd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( -. ( P pCnt 0 ) <_ ( P pCnt B ) -> A =/= 0 ) ) |
48 |
42 47
|
mpd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A =/= 0 ) |
49 |
27 48
|
eqnetrrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / y ) =/= 0 ) |
50 |
|
simprll |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. NN ) |
51 |
50
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. CC ) |
52 |
50
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y =/= 0 ) |
53 |
51 52
|
div0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / y ) = 0 ) |
54 |
|
oveq1 |
|- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
55 |
54
|
eqeq1d |
|- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
56 |
53 55
|
syl5ibrcom |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
57 |
56
|
necon3d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
58 |
49 57
|
mpd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x =/= 0 ) |
59 |
|
pczcl |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
60 |
23 26 58 59
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. NN0 ) |
61 |
25 60
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. NN ) |
62 |
61
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. CC ) |
63 |
62 51
|
mulcomd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) x. y ) = ( y x. ( P ^ ( P pCnt x ) ) ) ) |
64 |
63
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
65 |
26
|
zcnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> x e. CC ) |
66 |
23 50
|
pccld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. NN0 ) |
67 |
25 66
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. NN ) |
68 |
67
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. CC ) |
69 |
61
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) =/= 0 ) |
70 |
67
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) =/= 0 ) |
71 |
65 62 51 68 69 70 52
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( ( P ^ ( P pCnt x ) ) x. y ) ) ) |
72 |
27
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) |
73 |
|
pcdiv |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
74 |
23 26 58 50 73
|
syl121anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
75 |
72 74
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
76 |
75
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) ) |
77 |
25
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P e. CC ) |
78 |
25
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> P =/= 0 ) |
79 |
66
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt y ) e. ZZ ) |
80 |
60
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt x ) e. ZZ ) |
81 |
77 78 79 80
|
expsubd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt x ) - ( P pCnt y ) ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) |
82 |
76 81
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) |
83 |
82
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) |
84 |
27
|
oveq1d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) ) |
85 |
65 51 62 68 52 70 69
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / y ) / ( ( P ^ ( P pCnt x ) ) / ( P ^ ( P pCnt y ) ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
86 |
83 84 85
|
3eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( A / ( P ^ ( P pCnt A ) ) ) = ( ( x x. ( P ^ ( P pCnt y ) ) ) / ( y x. ( P ^ ( P pCnt x ) ) ) ) ) |
87 |
64 71 86
|
3eqtr4d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) = ( A / ( P ^ ( P pCnt A ) ) ) ) |
88 |
87
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) = ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) |
89 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. QQ ) |
90 |
89 14
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A e. CC ) |
91 |
|
pcqcl |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ ) |
92 |
23 89 48 91
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) e. ZZ ) |
93 |
77 78 92
|
expclzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) e. CC ) |
94 |
77 78 92
|
expne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt A ) ) =/= 0 ) |
95 |
90 93 94
|
divcan2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A ) |
96 |
88 95
|
eqtr2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> A = ( ( P ^ ( P pCnt A ) ) x. ( ( x / ( P ^ ( P pCnt x ) ) ) / ( y / ( P ^ ( P pCnt y ) ) ) ) ) ) |
97 |
|
simplrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. ZZ ) |
98 |
|
simprrr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( z / w ) ) |
99 |
98 31
|
eqnetrrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / w ) =/= 0 ) |
100 |
|
simprlr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. NN ) |
101 |
100
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. CC ) |
102 |
100
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w =/= 0 ) |
103 |
101 102
|
div0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( 0 / w ) = 0 ) |
104 |
|
oveq1 |
|- ( z = 0 -> ( z / w ) = ( 0 / w ) ) |
105 |
104
|
eqeq1d |
|- ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) ) |
106 |
103 105
|
syl5ibrcom |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z = 0 -> ( z / w ) = 0 ) ) |
107 |
106
|
necon3d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) ) |
108 |
99 107
|
mpd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z =/= 0 ) |
109 |
|
pczcl |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 ) |
110 |
23 97 108 109
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. NN0 ) |
111 |
25 110
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. NN ) |
112 |
111
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. CC ) |
113 |
112 101
|
mulcomd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) x. w ) = ( w x. ( P ^ ( P pCnt z ) ) ) ) |
114 |
113
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
115 |
97
|
zcnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> z e. CC ) |
116 |
23 100
|
pccld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. NN0 ) |
117 |
25 116
|
nnexpcld |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. NN ) |
118 |
117
|
nncnd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. CC ) |
119 |
111
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) =/= 0 ) |
120 |
117
|
nnne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) =/= 0 ) |
121 |
115 112 101 118 119 120 102
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( ( P ^ ( P pCnt z ) ) x. w ) ) ) |
122 |
98
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) ) |
123 |
|
pcdiv |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
124 |
23 97 108 100 123
|
syl121anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
125 |
122 124
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
126 |
125
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
127 |
116
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt w ) e. ZZ ) |
128 |
110
|
nn0zd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt z ) e. ZZ ) |
129 |
77 78 127 128
|
expsubd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( ( P pCnt z ) - ( P pCnt w ) ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) |
130 |
126 129
|
eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) = ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) |
131 |
130
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) |
132 |
98
|
oveq1d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) ) |
133 |
115 101 112 118 102 120 119
|
divdivdivd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / w ) / ( ( P ^ ( P pCnt z ) ) / ( P ^ ( P pCnt w ) ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
134 |
131 132 133
|
3eqtrd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( B / ( P ^ ( P pCnt B ) ) ) = ( ( z x. ( P ^ ( P pCnt w ) ) ) / ( w x. ( P ^ ( P pCnt z ) ) ) ) ) |
135 |
114 121 134
|
3eqtr4d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) = ( B / ( P ^ ( P pCnt B ) ) ) ) |
136 |
135
|
oveq2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) = ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) ) |
137 |
|
qcn |
|- ( B e. QQ -> B e. CC ) |
138 |
30 137
|
syl |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B e. CC ) |
139 |
77 78 33
|
expclzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) e. CC ) |
140 |
77 78 33
|
expne0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt B ) ) =/= 0 ) |
141 |
138 139 140
|
divcan2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt B ) ) x. ( B / ( P ^ ( P pCnt B ) ) ) ) = B ) |
142 |
136 141
|
eqtr2d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> B = ( ( P ^ ( P pCnt B ) ) x. ( ( z / ( P ^ ( P pCnt z ) ) ) / ( w / ( P ^ ( P pCnt w ) ) ) ) ) ) |
143 |
|
eluz |
|- ( ( ( P pCnt A ) e. ZZ /\ ( P pCnt B ) e. ZZ ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) |
144 |
92 33 143
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) <-> ( P pCnt A ) <_ ( P pCnt B ) ) ) |
145 |
43 144
|
mpbird |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt B ) e. ( ZZ>= ` ( P pCnt A ) ) ) |
146 |
|
pczdvds |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P ^ ( P pCnt x ) ) || x ) |
147 |
23 26 58 146
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) || x ) |
148 |
61
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt x ) ) e. ZZ ) |
149 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt x ) ) e. ZZ /\ ( P ^ ( P pCnt x ) ) =/= 0 /\ x e. ZZ ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) |
150 |
148 69 26 149
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt x ) ) || x <-> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) ) |
151 |
147 150
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ ) |
152 |
|
pczndvds2 |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) |
153 |
23 26 58 152
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) |
154 |
151 153
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( x / ( P ^ ( P pCnt x ) ) ) e. ZZ /\ -. P || ( x / ( P ^ ( P pCnt x ) ) ) ) ) |
155 |
|
pcdvds |
|- ( ( P e. Prime /\ y e. NN ) -> ( P ^ ( P pCnt y ) ) || y ) |
156 |
23 50 155
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) || y ) |
157 |
67
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. ZZ ) |
158 |
50
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. ZZ ) |
159 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt y ) ) e. ZZ /\ ( P ^ ( P pCnt y ) ) =/= 0 /\ y e. ZZ ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) |
160 |
157 70 158 159
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt y ) ) || y <-> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) ) |
161 |
156 160
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ ) |
162 |
50
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> y e. RR ) |
163 |
67
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt y ) ) e. RR ) |
164 |
50
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < y ) |
165 |
67
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt y ) ) ) |
166 |
162 163 164 165
|
divgt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) |
167 |
|
elnnz |
|- ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN <-> ( ( y / ( P ^ ( P pCnt y ) ) ) e. ZZ /\ 0 < ( y / ( P ^ ( P pCnt y ) ) ) ) ) |
168 |
161 166 167
|
sylanbrc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( y / ( P ^ ( P pCnt y ) ) ) e. NN ) |
169 |
|
pcndvds2 |
|- ( ( P e. Prime /\ y e. NN ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) |
170 |
23 50 169
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) |
171 |
168 170
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( y / ( P ^ ( P pCnt y ) ) ) e. NN /\ -. P || ( y / ( P ^ ( P pCnt y ) ) ) ) ) |
172 |
|
pczdvds |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P ^ ( P pCnt z ) ) || z ) |
173 |
23 97 108 172
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) || z ) |
174 |
111
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt z ) ) e. ZZ ) |
175 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt z ) ) e. ZZ /\ ( P ^ ( P pCnt z ) ) =/= 0 /\ z e. ZZ ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) |
176 |
174 119 97 175
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt z ) ) || z <-> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) ) |
177 |
173 176
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ ) |
178 |
|
pczndvds2 |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) |
179 |
23 97 108 178
|
syl12anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) |
180 |
177 179
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( z / ( P ^ ( P pCnt z ) ) ) e. ZZ /\ -. P || ( z / ( P ^ ( P pCnt z ) ) ) ) ) |
181 |
|
pcdvds |
|- ( ( P e. Prime /\ w e. NN ) -> ( P ^ ( P pCnt w ) ) || w ) |
182 |
23 100 181
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) || w ) |
183 |
117
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. ZZ ) |
184 |
100
|
nnzd |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. ZZ ) |
185 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt w ) ) e. ZZ /\ ( P ^ ( P pCnt w ) ) =/= 0 /\ w e. ZZ ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) |
186 |
183 120 184 185
|
syl3anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( P ^ ( P pCnt w ) ) || w <-> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) ) |
187 |
182 186
|
mpbid |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ ) |
188 |
100
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> w e. RR ) |
189 |
117
|
nnred |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P ^ ( P pCnt w ) ) e. RR ) |
190 |
100
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < w ) |
191 |
117
|
nngt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( P ^ ( P pCnt w ) ) ) |
192 |
188 189 190 191
|
divgt0d |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) |
193 |
|
elnnz |
|- ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN <-> ( ( w / ( P ^ ( P pCnt w ) ) ) e. ZZ /\ 0 < ( w / ( P ^ ( P pCnt w ) ) ) ) ) |
194 |
187 192 193
|
sylanbrc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( w / ( P ^ ( P pCnt w ) ) ) e. NN ) |
195 |
|
pcndvds2 |
|- ( ( P e. Prime /\ w e. NN ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) |
196 |
23 100 195
|
syl2anc |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) |
197 |
194 196
|
jca |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( ( w / ( P ^ ( P pCnt w ) ) ) e. NN /\ -. P || ( w / ( P ^ ( P pCnt w ) ) ) ) ) |
198 |
23 96 142 145 154 171 180 197
|
pcaddlem |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( A = ( x / y ) /\ B = ( z / w ) ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
199 |
198
|
expr |
|- ( ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
200 |
199
|
rexlimdvva |
|- ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
201 |
22 200
|
syl5bir |
|- ( ( ( ph /\ B =/= 0 ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
202 |
201
|
rexlimdvva |
|- ( ( ph /\ B =/= 0 ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
203 |
21 202
|
syl5bir |
|- ( ( ph /\ B =/= 0 ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
204 |
20 203
|
pm2.61dane |
|- ( ph -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) ) |
205 |
6 8 204
|
mp2and |
|- ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |