| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcaddlem.1 |
|- ( ph -> P e. Prime ) |
| 2 |
|
pcaddlem.2 |
|- ( ph -> A = ( ( P ^ M ) x. ( R / S ) ) ) |
| 3 |
|
pcaddlem.3 |
|- ( ph -> B = ( ( P ^ N ) x. ( T / U ) ) ) |
| 4 |
|
pcaddlem.4 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 |
|
pcaddlem.5 |
|- ( ph -> ( R e. ZZ /\ -. P || R ) ) |
| 6 |
|
pcaddlem.6 |
|- ( ph -> ( S e. NN /\ -. P || S ) ) |
| 7 |
|
pcaddlem.7 |
|- ( ph -> ( T e. ZZ /\ -. P || T ) ) |
| 8 |
|
pcaddlem.8 |
|- ( ph -> ( U e. NN /\ -. P || U ) ) |
| 9 |
|
oveq2 |
|- ( ( A + B ) = 0 -> ( P pCnt ( A + B ) ) = ( P pCnt 0 ) ) |
| 10 |
9
|
breq2d |
|- ( ( A + B ) = 0 -> ( M <_ ( P pCnt ( A + B ) ) <-> M <_ ( P pCnt 0 ) ) ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
4 11
|
syl |
|- ( ph -> M e. ZZ ) |
| 13 |
12
|
zred |
|- ( ph -> M e. RR ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> M e. RR ) |
| 15 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 16 |
1 15
|
syl |
|- ( ph -> P e. NN ) |
| 17 |
16
|
nncnd |
|- ( ph -> P e. CC ) |
| 18 |
16
|
nnne0d |
|- ( ph -> P =/= 0 ) |
| 19 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 20 |
4 19
|
syl |
|- ( ph -> N e. ZZ ) |
| 21 |
20 12
|
zsubcld |
|- ( ph -> ( N - M ) e. ZZ ) |
| 22 |
17 18 21
|
expclzd |
|- ( ph -> ( P ^ ( N - M ) ) e. CC ) |
| 23 |
7
|
simpld |
|- ( ph -> T e. ZZ ) |
| 24 |
23
|
zcnd |
|- ( ph -> T e. CC ) |
| 25 |
8
|
simpld |
|- ( ph -> U e. NN ) |
| 26 |
25
|
nncnd |
|- ( ph -> U e. CC ) |
| 27 |
25
|
nnne0d |
|- ( ph -> U =/= 0 ) |
| 28 |
22 24 26 27
|
divassd |
|- ( ph -> ( ( ( P ^ ( N - M ) ) x. T ) / U ) = ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( ( R / S ) + ( ( ( P ^ ( N - M ) ) x. T ) / U ) ) = ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) |
| 30 |
5
|
simpld |
|- ( ph -> R e. ZZ ) |
| 31 |
30
|
zcnd |
|- ( ph -> R e. CC ) |
| 32 |
6
|
simpld |
|- ( ph -> S e. NN ) |
| 33 |
32
|
nncnd |
|- ( ph -> S e. CC ) |
| 34 |
22 24
|
mulcld |
|- ( ph -> ( ( P ^ ( N - M ) ) x. T ) e. CC ) |
| 35 |
32
|
nnne0d |
|- ( ph -> S =/= 0 ) |
| 36 |
31 33 34 26 35 27
|
divadddivd |
|- ( ph -> ( ( R / S ) + ( ( ( P ^ ( N - M ) ) x. T ) / U ) ) = ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) |
| 37 |
29 36
|
eqtr3d |
|- ( ph -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) ) |
| 40 |
1
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> P e. Prime ) |
| 41 |
25
|
nnzd |
|- ( ph -> U e. ZZ ) |
| 42 |
30 41
|
zmulcld |
|- ( ph -> ( R x. U ) e. ZZ ) |
| 43 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
| 44 |
4 43
|
syl |
|- ( ph -> ( N - M ) e. NN0 ) |
| 45 |
16 44
|
nnexpcld |
|- ( ph -> ( P ^ ( N - M ) ) e. NN ) |
| 46 |
45
|
nnzd |
|- ( ph -> ( P ^ ( N - M ) ) e. ZZ ) |
| 47 |
46 23
|
zmulcld |
|- ( ph -> ( ( P ^ ( N - M ) ) x. T ) e. ZZ ) |
| 48 |
32
|
nnzd |
|- ( ph -> S e. ZZ ) |
| 49 |
47 48
|
zmulcld |
|- ( ph -> ( ( ( P ^ ( N - M ) ) x. T ) x. S ) e. ZZ ) |
| 50 |
42 49
|
zaddcld |
|- ( ph -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ ) |
| 52 |
17 18 12
|
expclzd |
|- ( ph -> ( P ^ M ) e. CC ) |
| 53 |
52
|
mul01d |
|- ( ph -> ( ( P ^ M ) x. 0 ) = 0 ) |
| 54 |
|
oveq2 |
|- ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = 0 -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( ( P ^ M ) x. 0 ) ) |
| 55 |
54
|
eqeq1d |
|- ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = 0 -> ( ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = 0 <-> ( ( P ^ M ) x. 0 ) = 0 ) ) |
| 56 |
53 55
|
syl5ibrcom |
|- ( ph -> ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) = 0 -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = 0 ) ) |
| 57 |
56
|
necon3d |
|- ( ph -> ( ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) =/= 0 -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) ) |
| 58 |
31 33 35
|
divcld |
|- ( ph -> ( R / S ) e. CC ) |
| 59 |
24 26 27
|
divcld |
|- ( ph -> ( T / U ) e. CC ) |
| 60 |
22 59
|
mulcld |
|- ( ph -> ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. CC ) |
| 61 |
52 58 60
|
adddid |
|- ( ph -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( ( ( P ^ M ) x. ( R / S ) ) + ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) |
| 62 |
12
|
zcnd |
|- ( ph -> M e. CC ) |
| 63 |
20
|
zcnd |
|- ( ph -> N e. CC ) |
| 64 |
62 63
|
pncan3d |
|- ( ph -> ( M + ( N - M ) ) = N ) |
| 65 |
64
|
oveq2d |
|- ( ph -> ( P ^ ( M + ( N - M ) ) ) = ( P ^ N ) ) |
| 66 |
|
expaddz |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( M e. ZZ /\ ( N - M ) e. ZZ ) ) -> ( P ^ ( M + ( N - M ) ) ) = ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) ) |
| 67 |
17 18 12 21 66
|
syl22anc |
|- ( ph -> ( P ^ ( M + ( N - M ) ) ) = ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) ) |
| 68 |
65 67
|
eqtr3d |
|- ( ph -> ( P ^ N ) = ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ph -> ( ( P ^ N ) x. ( T / U ) ) = ( ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) x. ( T / U ) ) ) |
| 70 |
52 22 59
|
mulassd |
|- ( ph -> ( ( ( P ^ M ) x. ( P ^ ( N - M ) ) ) x. ( T / U ) ) = ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) |
| 71 |
3 69 70
|
3eqtrd |
|- ( ph -> B = ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) |
| 72 |
2 71
|
oveq12d |
|- ( ph -> ( A + B ) = ( ( ( P ^ M ) x. ( R / S ) ) + ( ( P ^ M ) x. ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) |
| 73 |
61 72
|
eqtr4d |
|- ( ph -> ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( A + B ) ) |
| 74 |
73
|
neeq1d |
|- ( ph -> ( ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) =/= 0 <-> ( A + B ) =/= 0 ) ) |
| 75 |
37
|
neeq1d |
|- ( ph -> ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 <-> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) =/= 0 ) ) |
| 76 |
57 74 75
|
3imtr3d |
|- ( ph -> ( ( A + B ) =/= 0 -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) =/= 0 ) ) |
| 77 |
32 25
|
nnmulcld |
|- ( ph -> ( S x. U ) e. NN ) |
| 78 |
77
|
nncnd |
|- ( ph -> ( S x. U ) e. CC ) |
| 79 |
77
|
nnne0d |
|- ( ph -> ( S x. U ) =/= 0 ) |
| 80 |
78 79
|
div0d |
|- ( ph -> ( 0 / ( S x. U ) ) = 0 ) |
| 81 |
|
oveq1 |
|- ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) = 0 -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) = ( 0 / ( S x. U ) ) ) |
| 82 |
81
|
eqeq1d |
|- ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) = 0 -> ( ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) = 0 <-> ( 0 / ( S x. U ) ) = 0 ) ) |
| 83 |
80 82
|
syl5ibrcom |
|- ( ph -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) = 0 -> ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) = 0 ) ) |
| 84 |
83
|
necon3d |
|- ( ph -> ( ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) =/= 0 -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) ) |
| 85 |
76 84
|
syld |
|- ( ph -> ( ( A + B ) =/= 0 -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) ) |
| 86 |
85
|
imp |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) |
| 87 |
77
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( S x. U ) e. NN ) |
| 88 |
|
pcdiv |
|- ( ( P e. Prime /\ ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ /\ ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) /\ ( S x. U ) e. NN ) -> ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) ) |
| 89 |
40 51 86 87 88
|
syl121anc |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) / ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) ) |
| 90 |
|
pcmul |
|- ( ( P e. Prime /\ ( S e. ZZ /\ S =/= 0 ) /\ ( U e. ZZ /\ U =/= 0 ) ) -> ( P pCnt ( S x. U ) ) = ( ( P pCnt S ) + ( P pCnt U ) ) ) |
| 91 |
1 48 35 41 27 90
|
syl122anc |
|- ( ph -> ( P pCnt ( S x. U ) ) = ( ( P pCnt S ) + ( P pCnt U ) ) ) |
| 92 |
6
|
simprd |
|- ( ph -> -. P || S ) |
| 93 |
|
pceq0 |
|- ( ( P e. Prime /\ S e. NN ) -> ( ( P pCnt S ) = 0 <-> -. P || S ) ) |
| 94 |
1 32 93
|
syl2anc |
|- ( ph -> ( ( P pCnt S ) = 0 <-> -. P || S ) ) |
| 95 |
92 94
|
mpbird |
|- ( ph -> ( P pCnt S ) = 0 ) |
| 96 |
8
|
simprd |
|- ( ph -> -. P || U ) |
| 97 |
|
pceq0 |
|- ( ( P e. Prime /\ U e. NN ) -> ( ( P pCnt U ) = 0 <-> -. P || U ) ) |
| 98 |
1 25 97
|
syl2anc |
|- ( ph -> ( ( P pCnt U ) = 0 <-> -. P || U ) ) |
| 99 |
96 98
|
mpbird |
|- ( ph -> ( P pCnt U ) = 0 ) |
| 100 |
95 99
|
oveq12d |
|- ( ph -> ( ( P pCnt S ) + ( P pCnt U ) ) = ( 0 + 0 ) ) |
| 101 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 102 |
100 101
|
eqtrdi |
|- ( ph -> ( ( P pCnt S ) + ( P pCnt U ) ) = 0 ) |
| 103 |
91 102
|
eqtrd |
|- ( ph -> ( P pCnt ( S x. U ) ) = 0 ) |
| 104 |
103
|
oveq2d |
|- ( ph -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - 0 ) ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) = ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - 0 ) ) |
| 106 |
|
pczcl |
|- ( ( P e. Prime /\ ( ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) e. ZZ /\ ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) =/= 0 ) ) -> ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) e. NN0 ) |
| 107 |
40 51 86 106
|
syl12anc |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) e. NN0 ) |
| 108 |
107
|
nn0cnd |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) e. CC ) |
| 109 |
108
|
subid1d |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - 0 ) = ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) ) |
| 110 |
105 109
|
eqtrd |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) - ( P pCnt ( S x. U ) ) ) = ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) ) |
| 111 |
39 89 110
|
3eqtrd |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) = ( P pCnt ( ( R x. U ) + ( ( ( P ^ ( N - M ) ) x. T ) x. S ) ) ) ) |
| 112 |
111 107
|
eqeltrd |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) e. NN0 ) |
| 113 |
|
nn0addge1 |
|- ( ( M e. RR /\ ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) e. NN0 ) -> M <_ ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 114 |
14 112 113
|
syl2anc |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> M <_ ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 115 |
|
nnq |
|- ( P e. NN -> P e. QQ ) |
| 116 |
16 115
|
syl |
|- ( ph -> P e. QQ ) |
| 117 |
|
qexpclz |
|- ( ( P e. QQ /\ P =/= 0 /\ M e. ZZ ) -> ( P ^ M ) e. QQ ) |
| 118 |
116 18 12 117
|
syl3anc |
|- ( ph -> ( P ^ M ) e. QQ ) |
| 119 |
118
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P ^ M ) e. QQ ) |
| 120 |
17 18 12
|
expne0d |
|- ( ph -> ( P ^ M ) =/= 0 ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P ^ M ) =/= 0 ) |
| 122 |
|
znq |
|- ( ( R e. ZZ /\ S e. NN ) -> ( R / S ) e. QQ ) |
| 123 |
30 32 122
|
syl2anc |
|- ( ph -> ( R / S ) e. QQ ) |
| 124 |
|
qexpclz |
|- ( ( P e. QQ /\ P =/= 0 /\ ( N - M ) e. ZZ ) -> ( P ^ ( N - M ) ) e. QQ ) |
| 125 |
116 18 21 124
|
syl3anc |
|- ( ph -> ( P ^ ( N - M ) ) e. QQ ) |
| 126 |
|
znq |
|- ( ( T e. ZZ /\ U e. NN ) -> ( T / U ) e. QQ ) |
| 127 |
23 25 126
|
syl2anc |
|- ( ph -> ( T / U ) e. QQ ) |
| 128 |
|
qmulcl |
|- ( ( ( P ^ ( N - M ) ) e. QQ /\ ( T / U ) e. QQ ) -> ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. QQ ) |
| 129 |
125 127 128
|
syl2anc |
|- ( ph -> ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. QQ ) |
| 130 |
|
qaddcl |
|- ( ( ( R / S ) e. QQ /\ ( ( P ^ ( N - M ) ) x. ( T / U ) ) e. QQ ) -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ ) |
| 131 |
123 129 130
|
syl2anc |
|- ( ph -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ ) |
| 133 |
74 57
|
sylbird |
|- ( ph -> ( ( A + B ) =/= 0 -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) ) |
| 134 |
133
|
imp |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) |
| 135 |
|
pcqmul |
|- ( ( P e. Prime /\ ( ( P ^ M ) e. QQ /\ ( P ^ M ) =/= 0 ) /\ ( ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) e. QQ /\ ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) =/= 0 ) ) -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 136 |
40 119 121 132 134 135
|
syl122anc |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 137 |
73
|
oveq2d |
|- ( ph -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( P pCnt ( A + B ) ) ) |
| 138 |
137
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( ( P ^ M ) x. ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( P pCnt ( A + B ) ) ) |
| 139 |
|
pcid |
|- ( ( P e. Prime /\ M e. ZZ ) -> ( P pCnt ( P ^ M ) ) = M ) |
| 140 |
1 12 139
|
syl2anc |
|- ( ph -> ( P pCnt ( P ^ M ) ) = M ) |
| 141 |
140
|
oveq1d |
|- ( ph -> ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 142 |
141
|
adantr |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( ( P pCnt ( P ^ M ) ) + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) = ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 143 |
136 138 142
|
3eqtr3d |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> ( P pCnt ( A + B ) ) = ( M + ( P pCnt ( ( R / S ) + ( ( P ^ ( N - M ) ) x. ( T / U ) ) ) ) ) ) |
| 144 |
114 143
|
breqtrrd |
|- ( ( ph /\ ( A + B ) =/= 0 ) -> M <_ ( P pCnt ( A + B ) ) ) |
| 145 |
13
|
rexrd |
|- ( ph -> M e. RR* ) |
| 146 |
|
pnfge |
|- ( M e. RR* -> M <_ +oo ) |
| 147 |
145 146
|
syl |
|- ( ph -> M <_ +oo ) |
| 148 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
| 149 |
1 148
|
syl |
|- ( ph -> ( P pCnt 0 ) = +oo ) |
| 150 |
147 149
|
breqtrrd |
|- ( ph -> M <_ ( P pCnt 0 ) ) |
| 151 |
10 144 150
|
pm2.61ne |
|- ( ph -> M <_ ( P pCnt ( A + B ) ) ) |