Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> P e. Prime ) |
2 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
3 |
2
|
3ad2ant1 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. NN0 ) |
4 |
3
|
faccld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) e. NN ) |
5 |
4
|
nnzd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) e. ZZ ) |
6 |
4
|
nnne0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) =/= 0 ) |
7 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
8 |
7
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. NN0 ) |
9 |
8
|
faccld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) e. NN ) |
10 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
11 |
10
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. NN0 ) |
12 |
11
|
faccld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) e. NN ) |
13 |
9 12
|
nnmulcld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
14 |
|
pcdiv |
|- ( ( P e. Prime /\ ( ( ! ` N ) e. ZZ /\ ( ! ` N ) =/= 0 ) /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) -> ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
15 |
1 5 6 13 14
|
syl121anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
16 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
18 |
17
|
oveq2d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
19 |
|
fzfid |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( 1 ... N ) e. Fin ) |
20 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
21 |
20
|
3ad2ant1 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. RR ) |
22 |
21
|
adantr |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> N e. RR ) |
23 |
|
simpl3 |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> P e. Prime ) |
24 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
25 |
23 24
|
syl |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> P e. NN ) |
26 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
27 |
26
|
nnnn0d |
|- ( k e. ( 1 ... N ) -> k e. NN0 ) |
28 |
27
|
adantl |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> k e. NN0 ) |
29 |
25 28
|
nnexpcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( P ^ k ) e. NN ) |
30 |
22 29
|
nndivred |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( N / ( P ^ k ) ) e. RR ) |
31 |
30
|
flcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. ZZ ) |
32 |
31
|
zcnd |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. CC ) |
33 |
11
|
nn0red |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. RR ) |
34 |
21 33
|
resubcld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. RR ) |
35 |
34
|
adantr |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( N - K ) e. RR ) |
36 |
35 29
|
nndivred |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( ( N - K ) / ( P ^ k ) ) e. RR ) |
37 |
36
|
flcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) e. ZZ ) |
38 |
37
|
zcnd |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) e. CC ) |
39 |
33
|
adantr |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> K e. RR ) |
40 |
39 29
|
nndivred |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( K / ( P ^ k ) ) e. RR ) |
41 |
40
|
flcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( K / ( P ^ k ) ) ) e. ZZ ) |
42 |
41
|
zcnd |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( K / ( P ^ k ) ) ) e. CC ) |
43 |
38 42
|
addcld |
|- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) e. CC ) |
44 |
19 32 43
|
fsumsub |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) - sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
45 |
3
|
nn0zd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ZZ ) |
46 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
47 |
45 46
|
syl |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` N ) ) |
48 |
|
pcfac |
|- ( ( N e. NN0 /\ N e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
49 |
3 47 1 48
|
syl3anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
50 |
11
|
nn0ge0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> 0 <_ K ) |
51 |
21 33
|
subge02d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( 0 <_ K <-> ( N - K ) <_ N ) ) |
52 |
50 51
|
mpbid |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) <_ N ) |
53 |
11
|
nn0zd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. ZZ ) |
54 |
45 53
|
zsubcld |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. ZZ ) |
55 |
|
eluz |
|- ( ( ( N - K ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - K ) ) <-> ( N - K ) <_ N ) ) |
56 |
54 45 55
|
syl2anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N e. ( ZZ>= ` ( N - K ) ) <-> ( N - K ) <_ N ) ) |
57 |
52 56
|
mpbird |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` ( N - K ) ) ) |
58 |
|
pcfac |
|- ( ( ( N - K ) e. NN0 /\ N e. ( ZZ>= ` ( N - K ) ) /\ P e. Prime ) -> ( P pCnt ( ! ` ( N - K ) ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) ) |
59 |
8 57 1 58
|
syl3anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` ( N - K ) ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) ) |
60 |
|
elfzuz3 |
|- ( K e. ( 0 ... N ) -> N e. ( ZZ>= ` K ) ) |
61 |
60
|
3ad2ant2 |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` K ) ) |
62 |
|
pcfac |
|- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) /\ P e. Prime ) -> ( P pCnt ( ! ` K ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) |
63 |
11 61 1 62
|
syl3anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` K ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) |
64 |
59 63
|
oveq12d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
65 |
9
|
nnzd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) e. ZZ ) |
66 |
9
|
nnne0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) =/= 0 ) |
67 |
12
|
nnzd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) e. ZZ ) |
68 |
12
|
nnne0d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) =/= 0 ) |
69 |
|
pcmul |
|- ( ( P e. Prime /\ ( ( ! ` ( N - K ) ) e. ZZ /\ ( ! ` ( N - K ) ) =/= 0 ) /\ ( ( ! ` K ) e. ZZ /\ ( ! ` K ) =/= 0 ) ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) ) |
70 |
1 65 66 67 68 69
|
syl122anc |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) ) |
71 |
19 38 42
|
fsumadd |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
72 |
64 70 71
|
3eqtr4d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
73 |
49 72
|
oveq12d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) - sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
74 |
44 73
|
eqtr4d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
75 |
15 18 74
|
3eqtr4d |
|- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |