| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 2 | 
							
								
							 | 
							nnmulcl | 
							 |-  ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							 |-  ( N e. NN -> ( 2 x. N ) e. NN )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 5 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( N e. NN -> N e. NN0 )  | 
						
						
							| 6 | 
							
								
							 | 
							fzctr | 
							 |-  ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( N e. NN -> N e. ( 0 ... ( 2 x. N ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> N e. ( 0 ... ( 2 x. N ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> P e. Prime )  | 
						
						
							| 10 | 
							
								
							 | 
							pcbc | 
							 |-  ( ( ( 2 x. N ) e. NN /\ N e. ( 0 ... ( 2 x. N ) ) /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  | 
						
						
							| 11 | 
							
								4 8 9 10
							 | 
							syl3anc | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							nncn | 
							 |-  ( N e. NN -> N e. CC )  | 
						
						
							| 13 | 
							
								12
							 | 
							2timesd | 
							 |-  ( N e. NN -> ( 2 x. N ) = ( N + N ) )  | 
						
						
							| 14 | 
							
								12 12 13
							 | 
							mvrladdd | 
							 |-  ( N e. NN -> ( ( 2 x. N ) - N ) = N )  | 
						
						
							| 15 | 
							
								14
							 | 
							fvoveq1d | 
							 |-  ( N e. NN -> ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) = ( |_ ` ( N / ( P ^ k ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							 |-  ( N e. NN -> ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) = ( ( |_ ` ( N / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ad2antrr | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) = ( ( |_ ` ( N / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							nnre | 
							 |-  ( N e. NN -> N e. RR )  | 
						
						
							| 19 | 
							
								18
							 | 
							ad2antrr | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> N e. RR )  | 
						
						
							| 20 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> P e. NN )  | 
						
						
							| 22 | 
							
								
							 | 
							elfznn | 
							 |-  ( k e. ( 1 ... ( 2 x. N ) ) -> k e. NN )  | 
						
						
							| 23 | 
							
								22
							 | 
							nnnn0d | 
							 |-  ( k e. ( 1 ... ( 2 x. N ) ) -> k e. NN0 )  | 
						
						
							| 24 | 
							
								
							 | 
							nnexpcl | 
							 |-  ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN )  | 
						
						
							| 25 | 
							
								21 23 24
							 | 
							syl2an | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( P ^ k ) e. NN )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							nndivred | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( N / ( P ^ k ) ) e. RR )  | 
						
						
							| 27 | 
							
								26
							 | 
							flcld | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. ZZ )  | 
						
						
							| 28 | 
							
								27
							 | 
							zcnd | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. CC )  | 
						
						
							| 29 | 
							
								28
							 | 
							2timesd | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = ( ( |_ ` ( N / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) )  | 
						
						
							| 30 | 
							
								17 29
							 | 
							eqtr4d | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) = ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq2d | 
							 |-  ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) = ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							sumeq2dv | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								11 32
							 | 
							eqtrd | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  |