Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
3 |
1 2
|
mpan |
|- ( N e. NN -> ( 2 x. N ) e. NN ) |
4 |
3
|
adantr |
|- ( ( N e. NN /\ P e. Prime ) -> ( 2 x. N ) e. NN ) |
5 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
6 |
|
fzctr |
|- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
7 |
5 6
|
syl |
|- ( N e. NN -> N e. ( 0 ... ( 2 x. N ) ) ) |
8 |
7
|
adantr |
|- ( ( N e. NN /\ P e. Prime ) -> N e. ( 0 ... ( 2 x. N ) ) ) |
9 |
|
simpr |
|- ( ( N e. NN /\ P e. Prime ) -> P e. Prime ) |
10 |
|
pcbc |
|- ( ( ( 2 x. N ) e. NN /\ N e. ( 0 ... ( 2 x. N ) ) /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
11 |
4 8 9 10
|
syl3anc |
|- ( ( N e. NN /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
12 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
13 |
12
|
2timesd |
|- ( N e. NN -> ( 2 x. N ) = ( N + N ) ) |
14 |
12 12 13
|
mvrladdd |
|- ( N e. NN -> ( ( 2 x. N ) - N ) = N ) |
15 |
14
|
fvoveq1d |
|- ( N e. NN -> ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) = ( |_ ` ( N / ( P ^ k ) ) ) ) |
16 |
15
|
oveq1d |
|- ( N e. NN -> ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) = ( ( |_ ` ( N / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
17 |
16
|
ad2antrr |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) = ( ( |_ ` ( N / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
18 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
19 |
18
|
ad2antrr |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> N e. RR ) |
20 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
21 |
20
|
adantl |
|- ( ( N e. NN /\ P e. Prime ) -> P e. NN ) |
22 |
|
elfznn |
|- ( k e. ( 1 ... ( 2 x. N ) ) -> k e. NN ) |
23 |
22
|
nnnn0d |
|- ( k e. ( 1 ... ( 2 x. N ) ) -> k e. NN0 ) |
24 |
|
nnexpcl |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN ) |
25 |
21 23 24
|
syl2an |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( P ^ k ) e. NN ) |
26 |
19 25
|
nndivred |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( N / ( P ^ k ) ) e. RR ) |
27 |
26
|
flcld |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. ZZ ) |
28 |
27
|
zcnd |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. CC ) |
29 |
28
|
2timesd |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = ( ( |_ ` ( N / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
30 |
17 29
|
eqtr4d |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) = ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
31 |
30
|
oveq2d |
|- ( ( ( N e. NN /\ P e. Prime ) /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) = ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
32 |
31
|
sumeq2dv |
|- ( ( N e. NN /\ P e. Prime ) -> sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( ( |_ ` ( ( ( 2 x. N ) - N ) / ( P ^ k ) ) ) + ( |_ ` ( N / ( P ^ k ) ) ) ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
33 |
11 32
|
eqtrd |
|- ( ( N e. NN /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |