Metamath Proof Explorer


Theorem pccld

Description: Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses pccld.1
|- ( ph -> P e. Prime )
pccld.2
|- ( ph -> N e. NN )
Assertion pccld
|- ( ph -> ( P pCnt N ) e. NN0 )

Proof

Step Hyp Ref Expression
1 pccld.1
 |-  ( ph -> P e. Prime )
2 pccld.2
 |-  ( ph -> N e. NN )
3 pccl
 |-  ( ( P e. Prime /\ N e. NN ) -> ( P pCnt N ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( ph -> ( P pCnt N ) e. NN0 )