Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> P e. Prime ) |
2 |
|
simp2l |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> A e. ZZ ) |
3 |
|
simp3 |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> B e. NN ) |
4 |
|
znq |
|- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. QQ ) |
5 |
2 3 4
|
syl2anc |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( A / B ) e. QQ ) |
6 |
2
|
zcnd |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> A e. CC ) |
7 |
3
|
nncnd |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> B e. CC ) |
8 |
|
simp2r |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> A =/= 0 ) |
9 |
3
|
nnne0d |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> B =/= 0 ) |
10 |
6 7 8 9
|
divne0d |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( A / B ) =/= 0 ) |
11 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
12 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
13 |
11 12
|
pcval |
|- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
14 |
1 5 10 13
|
syl12anc |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt ( A / B ) ) = ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
15 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) |
16 |
15
|
pczpre |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
17 |
16
|
3adant3 |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
18 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
19 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
20 |
18 19
|
jca |
|- ( B e. NN -> ( B e. ZZ /\ B =/= 0 ) ) |
21 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) |
22 |
21
|
pczpre |
|- ( ( P e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
23 |
20 22
|
sylan2 |
|- ( ( P e. Prime /\ B e. NN ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
24 |
23
|
3adant2 |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
25 |
17 24
|
oveq12d |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) |
26 |
|
eqid |
|- ( A / B ) = ( A / B ) |
27 |
25 26
|
jctil |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( ( A / B ) = ( A / B ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) |
28 |
|
oveq1 |
|- ( x = A -> ( x / y ) = ( A / y ) ) |
29 |
28
|
eqeq2d |
|- ( x = A -> ( ( A / B ) = ( x / y ) <-> ( A / B ) = ( A / y ) ) ) |
30 |
|
breq2 |
|- ( x = A -> ( ( P ^ n ) || x <-> ( P ^ n ) || A ) ) |
31 |
30
|
rabbidv |
|- ( x = A -> { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || A } ) |
32 |
31
|
supeq1d |
|- ( x = A -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
33 |
32
|
oveq1d |
|- ( x = A -> ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) |
34 |
33
|
eqeq2d |
|- ( x = A -> ( ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
35 |
29 34
|
anbi12d |
|- ( x = A -> ( ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( ( A / B ) = ( A / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
36 |
|
oveq2 |
|- ( y = B -> ( A / y ) = ( A / B ) ) |
37 |
36
|
eqeq2d |
|- ( y = B -> ( ( A / B ) = ( A / y ) <-> ( A / B ) = ( A / B ) ) ) |
38 |
|
breq2 |
|- ( y = B -> ( ( P ^ n ) || y <-> ( P ^ n ) || B ) ) |
39 |
38
|
rabbidv |
|- ( y = B -> { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || B } ) |
40 |
39
|
supeq1d |
|- ( y = B -> sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
41 |
40
|
oveq2d |
|- ( y = B -> ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) |
42 |
41
|
eqeq2d |
|- ( y = B -> ( ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) |
43 |
37 42
|
anbi12d |
|- ( y = B -> ( ( ( A / B ) = ( A / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( ( A / B ) = ( A / B ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) ) |
44 |
35 43
|
rspc2ev |
|- ( ( A e. ZZ /\ B e. NN /\ ( ( A / B ) = ( A / B ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) -> E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
45 |
2 3 27 44
|
syl3anc |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
46 |
|
ovex |
|- ( ( P pCnt A ) - ( P pCnt B ) ) e. _V |
47 |
11 12
|
pceu |
|- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
48 |
1 5 10 47
|
syl12anc |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> E! z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
49 |
|
eqeq1 |
|- ( z = ( ( P pCnt A ) - ( P pCnt B ) ) -> ( z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
50 |
49
|
anbi2d |
|- ( z = ( ( P pCnt A ) - ( P pCnt B ) ) -> ( ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
51 |
50
|
2rexbidv |
|- ( z = ( ( P pCnt A ) - ( P pCnt B ) ) -> ( E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
52 |
51
|
iota2 |
|- ( ( ( ( P pCnt A ) - ( P pCnt B ) ) e. _V /\ E! z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) -> ( E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) ) |
53 |
46 48 52
|
sylancr |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) ) |
54 |
45 53
|
mpbid |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |
55 |
14 54
|
eqtrd |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |