Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
2 |
1
|
breq2d |
|- ( N = 0 -> ( A <_ ( P pCnt N ) <-> A <_ ( P pCnt 0 ) ) ) |
3 |
|
breq2 |
|- ( N = 0 -> ( ( P ^ A ) || N <-> ( P ^ A ) || 0 ) ) |
4 |
2 3
|
bibi12d |
|- ( N = 0 -> ( ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) <-> ( A <_ ( P pCnt 0 ) <-> ( P ^ A ) || 0 ) ) ) |
5 |
|
simpl3 |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> A e. NN0 ) |
6 |
5
|
nn0zd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> A e. ZZ ) |
7 |
|
simpl1 |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> P e. Prime ) |
8 |
|
simpl2 |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> N e. ZZ ) |
9 |
|
simpr |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> N =/= 0 ) |
10 |
|
pczcl |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |
11 |
7 8 9 10
|
syl12anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P pCnt N ) e. NN0 ) |
12 |
11
|
nn0zd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P pCnt N ) e. ZZ ) |
13 |
|
eluz |
|- ( ( A e. ZZ /\ ( P pCnt N ) e. ZZ ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) <-> A <_ ( P pCnt N ) ) ) |
14 |
6 12 13
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) <-> A <_ ( P pCnt N ) ) ) |
15 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
16 |
7 15
|
syl |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> P e. NN ) |
17 |
16
|
nnzd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> P e. ZZ ) |
18 |
|
dvdsexp |
|- ( ( P e. ZZ /\ A e. NN0 /\ ( P pCnt N ) e. ( ZZ>= ` A ) ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) |
19 |
18
|
3expia |
|- ( ( P e. ZZ /\ A e. NN0 ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) ) |
20 |
17 5 19
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) ) |
21 |
14 20
|
sylbird |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A <_ ( P pCnt N ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) ) |
22 |
|
pczdvds |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) || N ) |
23 |
7 8 9 22
|
syl12anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( P pCnt N ) ) || N ) |
24 |
|
nnexpcl |
|- ( ( P e. NN /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
25 |
15 24
|
sylan |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
26 |
25
|
3adant2 |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
27 |
26
|
nnzd |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P ^ A ) e. ZZ ) |
28 |
27
|
adantr |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ A ) e. ZZ ) |
29 |
16 11
|
nnexpcld |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( P pCnt N ) ) e. NN ) |
30 |
29
|
nnzd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( P pCnt N ) ) e. ZZ ) |
31 |
|
dvdstr |
|- ( ( ( P ^ A ) e. ZZ /\ ( P ^ ( P pCnt N ) ) e. ZZ /\ N e. ZZ ) -> ( ( ( P ^ A ) || ( P ^ ( P pCnt N ) ) /\ ( P ^ ( P pCnt N ) ) || N ) -> ( P ^ A ) || N ) ) |
32 |
28 30 8 31
|
syl3anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P ^ A ) || ( P ^ ( P pCnt N ) ) /\ ( P ^ ( P pCnt N ) ) || N ) -> ( P ^ A ) || N ) ) |
33 |
23 32
|
mpan2d |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P ^ A ) || ( P ^ ( P pCnt N ) ) -> ( P ^ A ) || N ) ) |
34 |
21 33
|
syld |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A <_ ( P pCnt N ) -> ( P ^ A ) || N ) ) |
35 |
|
nn0re |
|- ( ( P pCnt N ) e. NN0 -> ( P pCnt N ) e. RR ) |
36 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
37 |
|
ltnle |
|- ( ( ( P pCnt N ) e. RR /\ A e. RR ) -> ( ( P pCnt N ) < A <-> -. A <_ ( P pCnt N ) ) ) |
38 |
35 36 37
|
syl2an |
|- ( ( ( P pCnt N ) e. NN0 /\ A e. NN0 ) -> ( ( P pCnt N ) < A <-> -. A <_ ( P pCnt N ) ) ) |
39 |
|
nn0ltp1le |
|- ( ( ( P pCnt N ) e. NN0 /\ A e. NN0 ) -> ( ( P pCnt N ) < A <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
40 |
38 39
|
bitr3d |
|- ( ( ( P pCnt N ) e. NN0 /\ A e. NN0 ) -> ( -. A <_ ( P pCnt N ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
41 |
11 5 40
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( -. A <_ ( P pCnt N ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
42 |
|
peano2nn0 |
|- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) + 1 ) e. NN0 ) |
43 |
11 42
|
syl |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) + 1 ) e. NN0 ) |
44 |
43
|
nn0zd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) + 1 ) e. ZZ ) |
45 |
|
eluz |
|- ( ( ( ( P pCnt N ) + 1 ) e. ZZ /\ A e. ZZ ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
46 |
44 6 45
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
47 |
|
dvdsexp |
|- ( ( P e. ZZ /\ ( ( P pCnt N ) + 1 ) e. NN0 /\ A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) |
48 |
47
|
3expia |
|- ( ( P e. ZZ /\ ( ( P pCnt N ) + 1 ) e. NN0 ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) ) |
49 |
17 43 48
|
syl2anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) ) |
50 |
46 49
|
sylbird |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P pCnt N ) + 1 ) <_ A -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) ) |
51 |
|
pczndvds |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
52 |
7 8 9 51
|
syl12anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
53 |
16 43
|
nnexpcld |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) e. NN ) |
54 |
53
|
nnzd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) e. ZZ ) |
55 |
|
dvdstr |
|- ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) e. ZZ /\ ( P ^ A ) e. ZZ /\ N e. ZZ ) -> ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) ) |
56 |
54 28 8 55
|
syl3anc |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) ) |
57 |
52 56
|
mtod |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> -. ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) ) |
58 |
|
imnan |
|- ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) -> -. ( P ^ A ) || N ) <-> -. ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) ) |
59 |
57 58
|
sylibr |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) -> -. ( P ^ A ) || N ) ) |
60 |
50 59
|
syld |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P pCnt N ) + 1 ) <_ A -> -. ( P ^ A ) || N ) ) |
61 |
41 60
|
sylbid |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( -. A <_ ( P pCnt N ) -> -. ( P ^ A ) || N ) ) |
62 |
34 61
|
impcon4bid |
|- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) ) |
63 |
36
|
3ad2ant3 |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A e. RR ) |
64 |
63
|
rexrd |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A e. RR* ) |
65 |
|
pnfge |
|- ( A e. RR* -> A <_ +oo ) |
66 |
64 65
|
syl |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A <_ +oo ) |
67 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
68 |
67
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P pCnt 0 ) = +oo ) |
69 |
66 68
|
breqtrrd |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A <_ ( P pCnt 0 ) ) |
70 |
|
dvds0 |
|- ( ( P ^ A ) e. ZZ -> ( P ^ A ) || 0 ) |
71 |
27 70
|
syl |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P ^ A ) || 0 ) |
72 |
69 71
|
2thd |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt 0 ) <-> ( P ^ A ) || 0 ) ) |
73 |
4 62 72
|
pm2.61ne |
|- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) ) |