Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
3 |
1 2
|
ax-mp |
|- 0 e. QQ |
4 |
|
pcxcl |
|- ( ( P e. Prime /\ 0 e. QQ ) -> ( P pCnt 0 ) e. RR* ) |
5 |
3 4
|
mpan2 |
|- ( P e. Prime -> ( P pCnt 0 ) e. RR* ) |
6 |
5
|
xrleidd |
|- ( P e. Prime -> ( P pCnt 0 ) <_ ( P pCnt 0 ) ) |
7 |
6
|
ad2antrr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt 0 ) <_ ( P pCnt 0 ) ) |
8 |
|
simpr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> A = 0 ) |
9 |
8
|
oveq2d |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt A ) = ( P pCnt 0 ) ) |
10 |
|
simplr3 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> A || B ) |
11 |
8 10
|
eqbrtrrd |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> 0 || B ) |
12 |
|
simplr2 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> B e. ZZ ) |
13 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
14 |
12 13
|
syl |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( 0 || B <-> B = 0 ) ) |
15 |
11 14
|
mpbid |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> B = 0 ) |
16 |
15
|
oveq2d |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt B ) = ( P pCnt 0 ) ) |
17 |
7 9 16
|
3brtr4d |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
18 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
19 |
18
|
ad2antrr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> P e. NN ) |
20 |
|
simpll |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> P e. Prime ) |
21 |
|
simplr1 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A e. ZZ ) |
22 |
|
simpr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A =/= 0 ) |
23 |
|
pczcl |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) e. NN0 ) |
24 |
20 21 22 23
|
syl12anc |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P pCnt A ) e. NN0 ) |
25 |
19 24
|
nnexpcld |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
26 |
25
|
nnzd |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
27 |
|
simplr2 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> B e. ZZ ) |
28 |
|
pczdvds |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
29 |
20 21 22 28
|
syl12anc |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) || A ) |
30 |
|
simplr3 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A || B ) |
31 |
26 21 27 29 30
|
dvdstrd |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) || B ) |
32 |
|
pcdvdsb |
|- ( ( P e. Prime /\ B e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
33 |
20 27 24 32
|
syl3anc |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
34 |
31 33
|
mpbird |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
35 |
17 34
|
pm2.61dane |
|- ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |