Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
|
pcdvdsb |
|- ( ( P e. Prime /\ N e. ZZ /\ 1 e. NN0 ) -> ( 1 <_ ( P pCnt N ) <-> ( P ^ 1 ) || N ) ) |
4 |
2 3
|
mp3an3 |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( 1 <_ ( P pCnt N ) <-> ( P ^ 1 ) || N ) ) |
5 |
1 4
|
sylan2 |
|- ( ( P e. Prime /\ N e. NN ) -> ( 1 <_ ( P pCnt N ) <-> ( P ^ 1 ) || N ) ) |
6 |
|
pccl |
|- ( ( P e. Prime /\ N e. NN ) -> ( P pCnt N ) e. NN0 ) |
7 |
|
elnnnn0c |
|- ( ( P pCnt N ) e. NN <-> ( ( P pCnt N ) e. NN0 /\ 1 <_ ( P pCnt N ) ) ) |
8 |
7
|
baibr |
|- ( ( P pCnt N ) e. NN0 -> ( 1 <_ ( P pCnt N ) <-> ( P pCnt N ) e. NN ) ) |
9 |
6 8
|
syl |
|- ( ( P e. Prime /\ N e. NN ) -> ( 1 <_ ( P pCnt N ) <-> ( P pCnt N ) e. NN ) ) |
10 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
11 |
10
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
12 |
11
|
exp1d |
|- ( P e. Prime -> ( P ^ 1 ) = P ) |
13 |
12
|
adantr |
|- ( ( P e. Prime /\ N e. NN ) -> ( P ^ 1 ) = P ) |
14 |
13
|
breq1d |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P ^ 1 ) || N <-> P || N ) ) |
15 |
5 9 14
|
3bitr3d |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) ) |