| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nnz | 
							 |-  ( N e. NN -> N e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							1nn0 | 
							 |-  1 e. NN0  | 
						
						
							| 3 | 
							
								
							 | 
							pcdvdsb | 
							 |-  ( ( P e. Prime /\ N e. ZZ /\ 1 e. NN0 ) -> ( 1 <_ ( P pCnt N ) <-> ( P ^ 1 ) || N ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mp3an3 | 
							 |-  ( ( P e. Prime /\ N e. ZZ ) -> ( 1 <_ ( P pCnt N ) <-> ( P ^ 1 ) || N ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							sylan2 | 
							 |-  ( ( P e. Prime /\ N e. NN ) -> ( 1 <_ ( P pCnt N ) <-> ( P ^ 1 ) || N ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pccl | 
							 |-  ( ( P e. Prime /\ N e. NN ) -> ( P pCnt N ) e. NN0 )  | 
						
						
							| 7 | 
							
								
							 | 
							elnnnn0c | 
							 |-  ( ( P pCnt N ) e. NN <-> ( ( P pCnt N ) e. NN0 /\ 1 <_ ( P pCnt N ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							baibr | 
							 |-  ( ( P pCnt N ) e. NN0 -> ( 1 <_ ( P pCnt N ) <-> ( P pCnt N ) e. NN ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syl | 
							 |-  ( ( P e. Prime /\ N e. NN ) -> ( 1 <_ ( P pCnt N ) <-> ( P pCnt N ) e. NN ) )  | 
						
						
							| 10 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 11 | 
							
								10
							 | 
							nncnd | 
							 |-  ( P e. Prime -> P e. CC )  | 
						
						
							| 12 | 
							
								11
							 | 
							exp1d | 
							 |-  ( P e. Prime -> ( P ^ 1 ) = P )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( P e. Prime /\ N e. NN ) -> ( P ^ 1 ) = P )  | 
						
						
							| 14 | 
							
								13
							 | 
							breq1d | 
							 |-  ( ( P e. Prime /\ N e. NN ) -> ( ( P ^ 1 ) || N <-> P || N ) )  | 
						
						
							| 15 | 
							
								5 9 14
							 | 
							3bitr3d | 
							 |-  ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) )  |