Step |
Hyp |
Ref |
Expression |
1 |
|
pcelnn |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) ) |
2 |
|
pccl |
|- ( ( P e. Prime /\ N e. NN ) -> ( P pCnt N ) e. NN0 ) |
3 |
|
nnne0 |
|- ( ( P pCnt N ) e. NN -> ( P pCnt N ) =/= 0 ) |
4 |
|
elnn0 |
|- ( ( P pCnt N ) e. NN0 <-> ( ( P pCnt N ) e. NN \/ ( P pCnt N ) = 0 ) ) |
5 |
4
|
biimpi |
|- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) e. NN \/ ( P pCnt N ) = 0 ) ) |
6 |
5
|
ord |
|- ( ( P pCnt N ) e. NN0 -> ( -. ( P pCnt N ) e. NN -> ( P pCnt N ) = 0 ) ) |
7 |
6
|
necon1ad |
|- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) =/= 0 -> ( P pCnt N ) e. NN ) ) |
8 |
3 7
|
impbid2 |
|- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) e. NN <-> ( P pCnt N ) =/= 0 ) ) |
9 |
2 8
|
syl |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> ( P pCnt N ) =/= 0 ) ) |
10 |
1 9
|
bitr3d |
|- ( ( P e. Prime /\ N e. NN ) -> ( P || N <-> ( P pCnt N ) =/= 0 ) ) |
11 |
10
|
necon2bbid |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) = 0 <-> -. P || N ) ) |