Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
|- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
2 |
|
pcval.2 |
|- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
3 |
|
simprl |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> N e. QQ ) |
4 |
|
elq |
|- ( N e. QQ <-> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
5 |
3 4
|
sylib |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
6 |
|
ovex |
|- ( S - T ) e. _V |
7 |
|
biidd |
|- ( z = ( S - T ) -> ( N = ( x / y ) <-> N = ( x / y ) ) ) |
8 |
6 7
|
ceqsexv |
|- ( E. z ( z = ( S - T ) /\ N = ( x / y ) ) <-> N = ( x / y ) ) |
9 |
|
exancom |
|- ( E. z ( z = ( S - T ) /\ N = ( x / y ) ) <-> E. z ( N = ( x / y ) /\ z = ( S - T ) ) ) |
10 |
8 9
|
bitr3i |
|- ( N = ( x / y ) <-> E. z ( N = ( x / y ) /\ z = ( S - T ) ) ) |
11 |
10
|
rexbii |
|- ( E. y e. NN N = ( x / y ) <-> E. y e. NN E. z ( N = ( x / y ) /\ z = ( S - T ) ) ) |
12 |
|
rexcom4 |
|- ( E. y e. NN E. z ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
13 |
11 12
|
bitri |
|- ( E. y e. NN N = ( x / y ) <-> E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
14 |
13
|
rexbii |
|- ( E. x e. ZZ E. y e. NN N = ( x / y ) <-> E. x e. ZZ E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
15 |
|
rexcom4 |
|- ( E. x e. ZZ E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
16 |
14 15
|
bitri |
|- ( E. x e. ZZ E. y e. NN N = ( x / y ) <-> E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
17 |
5 16
|
sylib |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
18 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) |
19 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) |
20 |
|
simp11l |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> P e. Prime ) |
21 |
|
simp11r |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> N =/= 0 ) |
22 |
|
simp12 |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> ( x e. ZZ /\ y e. NN ) ) |
23 |
|
simp13l |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> N = ( x / y ) ) |
24 |
|
simp2 |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> ( s e. ZZ /\ t e. NN ) ) |
25 |
|
simp3l |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> N = ( s / t ) ) |
26 |
1 2 18 19 20 21 22 23 24 25
|
pceulem |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> ( S - T ) = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) |
27 |
|
simp13r |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = ( S - T ) ) |
28 |
|
simp3r |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) |
29 |
26 27 28
|
3eqtr4d |
|- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) |
30 |
29
|
3exp |
|- ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) -> ( ( s e. ZZ /\ t e. NN ) -> ( ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) |
31 |
30
|
rexlimdvv |
|- ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) |
32 |
31
|
3exp |
|- ( ( P e. Prime /\ N =/= 0 ) -> ( ( x e. ZZ /\ y e. NN ) -> ( ( N = ( x / y ) /\ z = ( S - T ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) ) |
33 |
32
|
adantrl |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( ( x e. ZZ /\ y e. NN ) -> ( ( N = ( x / y ) /\ z = ( S - T ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) ) |
34 |
33
|
rexlimdvv |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) |
35 |
34
|
impd |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) ) |
36 |
35
|
alrimivv |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> A. z A. w ( ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) ) |
37 |
|
eqeq1 |
|- ( z = w -> ( z = ( S - T ) <-> w = ( S - T ) ) ) |
38 |
37
|
anbi2d |
|- ( z = w -> ( ( N = ( x / y ) /\ z = ( S - T ) ) <-> ( N = ( x / y ) /\ w = ( S - T ) ) ) ) |
39 |
38
|
2rexbidv |
|- ( z = w -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) ) ) |
40 |
|
oveq1 |
|- ( x = s -> ( x / y ) = ( s / y ) ) |
41 |
40
|
eqeq2d |
|- ( x = s -> ( N = ( x / y ) <-> N = ( s / y ) ) ) |
42 |
|
breq2 |
|- ( x = s -> ( ( P ^ n ) || x <-> ( P ^ n ) || s ) ) |
43 |
42
|
rabbidv |
|- ( x = s -> { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || s } ) |
44 |
43
|
supeq1d |
|- ( x = s -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) ) |
45 |
1 44
|
eqtrid |
|- ( x = s -> S = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) ) |
46 |
45
|
oveq1d |
|- ( x = s -> ( S - T ) = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) |
47 |
46
|
eqeq2d |
|- ( x = s -> ( w = ( S - T ) <-> w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) ) |
48 |
41 47
|
anbi12d |
|- ( x = s -> ( ( N = ( x / y ) /\ w = ( S - T ) ) <-> ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) ) ) |
49 |
48
|
rexbidv |
|- ( x = s -> ( E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) <-> E. y e. NN ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) ) ) |
50 |
|
oveq2 |
|- ( y = t -> ( s / y ) = ( s / t ) ) |
51 |
50
|
eqeq2d |
|- ( y = t -> ( N = ( s / y ) <-> N = ( s / t ) ) ) |
52 |
|
breq2 |
|- ( y = t -> ( ( P ^ n ) || y <-> ( P ^ n ) || t ) ) |
53 |
52
|
rabbidv |
|- ( y = t -> { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || t } ) |
54 |
53
|
supeq1d |
|- ( y = t -> sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) |
55 |
2 54
|
eqtrid |
|- ( y = t -> T = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) |
56 |
55
|
oveq2d |
|- ( y = t -> ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) |
57 |
56
|
eqeq2d |
|- ( y = t -> ( w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) <-> w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) |
58 |
51 57
|
anbi12d |
|- ( y = t -> ( ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) <-> ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) ) |
59 |
58
|
cbvrexvw |
|- ( E. y e. NN ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) <-> E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) |
60 |
49 59
|
bitrdi |
|- ( x = s -> ( E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) <-> E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) ) |
61 |
60
|
cbvrexvw |
|- ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) <-> E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) |
62 |
39 61
|
bitrdi |
|- ( z = w -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) ) |
63 |
62
|
eu4 |
|- ( E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> ( E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ A. z A. w ( ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) ) ) |
64 |
17 36 63
|
sylanbrc |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |