| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcval.1 |
|- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
| 2 |
|
pcval.2 |
|- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
| 3 |
|
pceu.3 |
|- U = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) |
| 4 |
|
pceu.4 |
|- V = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) |
| 5 |
|
pceu.5 |
|- ( ph -> P e. Prime ) |
| 6 |
|
pceu.6 |
|- ( ph -> N =/= 0 ) |
| 7 |
|
pceu.7 |
|- ( ph -> ( x e. ZZ /\ y e. NN ) ) |
| 8 |
|
pceu.8 |
|- ( ph -> N = ( x / y ) ) |
| 9 |
|
pceu.9 |
|- ( ph -> ( s e. ZZ /\ t e. NN ) ) |
| 10 |
|
pceu.10 |
|- ( ph -> N = ( s / t ) ) |
| 11 |
7
|
simprd |
|- ( ph -> y e. NN ) |
| 12 |
11
|
nncnd |
|- ( ph -> y e. CC ) |
| 13 |
9
|
simpld |
|- ( ph -> s e. ZZ ) |
| 14 |
13
|
zcnd |
|- ( ph -> s e. CC ) |
| 15 |
12 14
|
mulcomd |
|- ( ph -> ( y x. s ) = ( s x. y ) ) |
| 16 |
10 8
|
eqtr3d |
|- ( ph -> ( s / t ) = ( x / y ) ) |
| 17 |
9
|
simprd |
|- ( ph -> t e. NN ) |
| 18 |
17
|
nncnd |
|- ( ph -> t e. CC ) |
| 19 |
7
|
simpld |
|- ( ph -> x e. ZZ ) |
| 20 |
19
|
zcnd |
|- ( ph -> x e. CC ) |
| 21 |
17
|
nnne0d |
|- ( ph -> t =/= 0 ) |
| 22 |
11
|
nnne0d |
|- ( ph -> y =/= 0 ) |
| 23 |
14 18 20 12 21 22
|
divmuleqd |
|- ( ph -> ( ( s / t ) = ( x / y ) <-> ( s x. y ) = ( x x. t ) ) ) |
| 24 |
16 23
|
mpbid |
|- ( ph -> ( s x. y ) = ( x x. t ) ) |
| 25 |
15 24
|
eqtrd |
|- ( ph -> ( y x. s ) = ( x x. t ) ) |
| 26 |
25
|
breq2d |
|- ( ph -> ( ( P ^ z ) || ( y x. s ) <-> ( P ^ z ) || ( x x. t ) ) ) |
| 27 |
26
|
rabbidv |
|- ( ph -> { z e. NN0 | ( P ^ z ) || ( y x. s ) } = { z e. NN0 | ( P ^ z ) || ( x x. t ) } ) |
| 28 |
|
oveq2 |
|- ( n = z -> ( P ^ n ) = ( P ^ z ) ) |
| 29 |
28
|
breq1d |
|- ( n = z -> ( ( P ^ n ) || ( y x. s ) <-> ( P ^ z ) || ( y x. s ) ) ) |
| 30 |
29
|
cbvrabv |
|- { n e. NN0 | ( P ^ n ) || ( y x. s ) } = { z e. NN0 | ( P ^ z ) || ( y x. s ) } |
| 31 |
28
|
breq1d |
|- ( n = z -> ( ( P ^ n ) || ( x x. t ) <-> ( P ^ z ) || ( x x. t ) ) ) |
| 32 |
31
|
cbvrabv |
|- { n e. NN0 | ( P ^ n ) || ( x x. t ) } = { z e. NN0 | ( P ^ z ) || ( x x. t ) } |
| 33 |
27 30 32
|
3eqtr4g |
|- ( ph -> { n e. NN0 | ( P ^ n ) || ( y x. s ) } = { n e. NN0 | ( P ^ n ) || ( x x. t ) } ) |
| 34 |
33
|
supeq1d |
|- ( ph -> sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) ) |
| 35 |
11
|
nnzd |
|- ( ph -> y e. ZZ ) |
| 36 |
18 21
|
div0d |
|- ( ph -> ( 0 / t ) = 0 ) |
| 37 |
|
oveq1 |
|- ( s = 0 -> ( s / t ) = ( 0 / t ) ) |
| 38 |
37
|
eqeq1d |
|- ( s = 0 -> ( ( s / t ) = 0 <-> ( 0 / t ) = 0 ) ) |
| 39 |
36 38
|
syl5ibrcom |
|- ( ph -> ( s = 0 -> ( s / t ) = 0 ) ) |
| 40 |
10
|
eqeq1d |
|- ( ph -> ( N = 0 <-> ( s / t ) = 0 ) ) |
| 41 |
39 40
|
sylibrd |
|- ( ph -> ( s = 0 -> N = 0 ) ) |
| 42 |
41
|
necon3d |
|- ( ph -> ( N =/= 0 -> s =/= 0 ) ) |
| 43 |
6 42
|
mpd |
|- ( ph -> s =/= 0 ) |
| 44 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) |
| 45 |
2 3 44
|
pcpremul |
|- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) /\ ( s e. ZZ /\ s =/= 0 ) ) -> ( T + U ) = sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) ) |
| 46 |
5 35 22 13 43 45
|
syl122anc |
|- ( ph -> ( T + U ) = sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) ) |
| 47 |
12 22
|
div0d |
|- ( ph -> ( 0 / y ) = 0 ) |
| 48 |
|
oveq1 |
|- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
| 49 |
48
|
eqeq1d |
|- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 50 |
47 49
|
syl5ibrcom |
|- ( ph -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 51 |
8
|
eqeq1d |
|- ( ph -> ( N = 0 <-> ( x / y ) = 0 ) ) |
| 52 |
50 51
|
sylibrd |
|- ( ph -> ( x = 0 -> N = 0 ) ) |
| 53 |
52
|
necon3d |
|- ( ph -> ( N =/= 0 -> x =/= 0 ) ) |
| 54 |
6 53
|
mpd |
|- ( ph -> x =/= 0 ) |
| 55 |
17
|
nnzd |
|- ( ph -> t e. ZZ ) |
| 56 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) |
| 57 |
1 4 56
|
pcpremul |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ ( t e. ZZ /\ t =/= 0 ) ) -> ( S + V ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) ) |
| 58 |
5 19 54 55 21 57
|
syl122anc |
|- ( ph -> ( S + V ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) ) |
| 59 |
34 46 58
|
3eqtr4d |
|- ( ph -> ( T + U ) = ( S + V ) ) |
| 60 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 61 |
5 60
|
syl |
|- ( ph -> P e. ( ZZ>= ` 2 ) ) |
| 62 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || y } |
| 63 |
62 2
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( y e. ZZ /\ y =/= 0 ) ) -> ( T e. NN0 /\ ( P ^ T ) || y ) ) |
| 64 |
63
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( y e. ZZ /\ y =/= 0 ) ) -> T e. NN0 ) |
| 65 |
61 35 22 64
|
syl12anc |
|- ( ph -> T e. NN0 ) |
| 66 |
65
|
nn0cnd |
|- ( ph -> T e. CC ) |
| 67 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || s } = { n e. NN0 | ( P ^ n ) || s } |
| 68 |
67 3
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( s e. ZZ /\ s =/= 0 ) ) -> ( U e. NN0 /\ ( P ^ U ) || s ) ) |
| 69 |
68
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( s e. ZZ /\ s =/= 0 ) ) -> U e. NN0 ) |
| 70 |
61 13 43 69
|
syl12anc |
|- ( ph -> U e. NN0 ) |
| 71 |
70
|
nn0cnd |
|- ( ph -> U e. CC ) |
| 72 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || x } |
| 73 |
72 1
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || x ) ) |
| 74 |
73
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> S e. NN0 ) |
| 75 |
61 19 54 74
|
syl12anc |
|- ( ph -> S e. NN0 ) |
| 76 |
75
|
nn0cnd |
|- ( ph -> S e. CC ) |
| 77 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || t } = { n e. NN0 | ( P ^ n ) || t } |
| 78 |
77 4
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( t e. ZZ /\ t =/= 0 ) ) -> ( V e. NN0 /\ ( P ^ V ) || t ) ) |
| 79 |
78
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( t e. ZZ /\ t =/= 0 ) ) -> V e. NN0 ) |
| 80 |
61 55 21 79
|
syl12anc |
|- ( ph -> V e. NN0 ) |
| 81 |
80
|
nn0cnd |
|- ( ph -> V e. CC ) |
| 82 |
66 71 76 81
|
addsubeq4d |
|- ( ph -> ( ( T + U ) = ( S + V ) <-> ( S - T ) = ( U - V ) ) ) |
| 83 |
59 82
|
mpbid |
|- ( ph -> ( S - T ) = ( U - V ) ) |