| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq2d | 
							 |-  ( x = 0 -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ 0 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = 0 -> ( x x. ( P pCnt A ) ) = ( 0 x. ( P pCnt A ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqeq12d | 
							 |-  ( x = 0 -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ 0 ) ) = ( 0 x. ( P pCnt A ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = y -> ( A ^ x ) = ( A ^ y ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							 |-  ( x = y -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ y ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = y -> ( x x. ( P pCnt A ) ) = ( y x. ( P pCnt A ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							 |-  ( x = y -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( y + 1 ) -> ( A ^ x ) = ( A ^ ( y + 1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq2d | 
							 |-  ( x = ( y + 1 ) -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ ( y + 1 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = ( y + 1 ) -> ( x x. ( P pCnt A ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeq12d | 
							 |-  ( x = ( y + 1 ) -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = -u y -> ( A ^ x ) = ( A ^ -u y ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							 |-  ( x = -u y -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ -u y ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = -u y -> ( x x. ( P pCnt A ) ) = ( -u y x. ( P pCnt A ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqeq12d | 
							 |-  ( x = -u y -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = N -> ( A ^ x ) = ( A ^ N ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							 |-  ( x = N -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ N ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = N -> ( x x. ( P pCnt A ) ) = ( N x. ( P pCnt A ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeq12d | 
							 |-  ( x = N -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							pc1 | 
							 |-  ( P e. Prime -> ( P pCnt 1 ) = 0 )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt 1 ) = 0 )  | 
						
						
							| 23 | 
							
								
							 | 
							qcn | 
							 |-  ( A e. QQ -> A e. CC )  | 
						
						
							| 24 | 
							
								23
							 | 
							ad2antrl | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> A e. CC )  | 
						
						
							| 25 | 
							
								24
							 | 
							exp0d | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( A ^ 0 ) = 1 )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq2d | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( A ^ 0 ) ) = ( P pCnt 1 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							pcqcl | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ )  | 
						
						
							| 28 | 
							
								27
							 | 
							zcnd | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. CC )  | 
						
						
							| 29 | 
							
								28
							 | 
							mul02d | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( 0 x. ( P pCnt A ) ) = 0 )  | 
						
						
							| 30 | 
							
								22 26 29
							 | 
							3eqtr4d | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( A ^ 0 ) ) = ( 0 x. ( P pCnt A ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							expp1 | 
							 |-  ( ( A e. CC /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) )  | 
						
						
							| 33 | 
							
								24 32
							 | 
							sylan | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq2d | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( P pCnt ( ( A ^ y ) x. A ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> P e. Prime )  | 
						
						
							| 36 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A e. QQ )  | 
						
						
							| 37 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A =/= 0 )  | 
						
						
							| 38 | 
							
								
							 | 
							nn0z | 
							 |-  ( y e. NN0 -> y e. ZZ )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantl | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> y e. ZZ )  | 
						
						
							| 40 | 
							
								
							 | 
							qexpclz | 
							 |-  ( ( A e. QQ /\ A =/= 0 /\ y e. ZZ ) -> ( A ^ y ) e. QQ )  | 
						
						
							| 41 | 
							
								36 37 39 40
							 | 
							syl3anc | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ y ) e. QQ )  | 
						
						
							| 42 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A e. CC )  | 
						
						
							| 43 | 
							
								42 37 39
							 | 
							expne0d | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ y ) =/= 0 )  | 
						
						
							| 44 | 
							
								
							 | 
							pcqmul | 
							 |-  ( ( P e. Prime /\ ( ( A ^ y ) e. QQ /\ ( A ^ y ) =/= 0 ) /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( ( A ^ y ) x. A ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) )  | 
						
						
							| 45 | 
							
								35 41 43 36 37 44
							 | 
							syl122anc | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( ( A ^ y ) x. A ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) )  | 
						
						
							| 46 | 
							
								34 45
							 | 
							eqtrd | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							nn0cn | 
							 |-  ( y e. NN0 -> y e. CC )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantl | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> y e. CC )  | 
						
						
							| 49 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt A ) e. CC )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							adddirp1d | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( y + 1 ) x. ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							eqeq12d | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) <-> ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) )  | 
						
						
							| 52 | 
							
								31 51
							 | 
							imbitrrid | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							ex | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( y e. NN0 -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							negeq | 
							 |-  ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> -u ( P pCnt ( A ^ y ) ) = -u ( y x. ( P pCnt A ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( y e. NN -> y e. NN0 )  | 
						
						
							| 56 | 
							
								
							 | 
							expneg | 
							 |-  ( ( A e. CC /\ y e. NN0 ) -> ( A ^ -u y ) = ( 1 / ( A ^ y ) ) )  | 
						
						
							| 57 | 
							
								24 55 56
							 | 
							syl2an | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ -u y ) = ( 1 / ( A ^ y ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							oveq2d | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( A ^ -u y ) ) = ( P pCnt ( 1 / ( A ^ y ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> P e. Prime )  | 
						
						
							| 60 | 
							
								55 41
							 | 
							sylan2 | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ y ) e. QQ )  | 
						
						
							| 61 | 
							
								55 43
							 | 
							sylan2 | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ y ) =/= 0 )  | 
						
						
							| 62 | 
							
								
							 | 
							pcrec | 
							 |-  ( ( P e. Prime /\ ( ( A ^ y ) e. QQ /\ ( A ^ y ) =/= 0 ) ) -> ( P pCnt ( 1 / ( A ^ y ) ) ) = -u ( P pCnt ( A ^ y ) ) )  | 
						
						
							| 63 | 
							
								59 60 61 62
							 | 
							syl12anc | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( 1 / ( A ^ y ) ) ) = -u ( P pCnt ( A ^ y ) ) )  | 
						
						
							| 64 | 
							
								58 63
							 | 
							eqtrd | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( A ^ -u y ) ) = -u ( P pCnt ( A ^ y ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							nncn | 
							 |-  ( y e. NN -> y e. CC )  | 
						
						
							| 66 | 
							
								
							 | 
							mulneg1 | 
							 |-  ( ( y e. CC /\ ( P pCnt A ) e. CC ) -> ( -u y x. ( P pCnt A ) ) = -u ( y x. ( P pCnt A ) ) )  | 
						
						
							| 67 | 
							
								65 28 66
							 | 
							syl2anr | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( -u y x. ( P pCnt A ) ) = -u ( y x. ( P pCnt A ) ) )  | 
						
						
							| 68 | 
							
								64 67
							 | 
							eqeq12d | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) <-> -u ( P pCnt ( A ^ y ) ) = -u ( y x. ( P pCnt A ) ) ) )  | 
						
						
							| 69 | 
							
								54 68
							 | 
							imbitrrid | 
							 |-  ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							ex | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( y e. NN -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) )  | 
						
						
							| 71 | 
							
								4 8 12 16 20 30 53 70
							 | 
							zindd | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( N e. ZZ -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							3impia | 
							 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) )  |