Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
2 |
1
|
oveq2d |
|- ( x = 0 -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ 0 ) ) ) |
3 |
|
oveq1 |
|- ( x = 0 -> ( x x. ( P pCnt A ) ) = ( 0 x. ( P pCnt A ) ) ) |
4 |
2 3
|
eqeq12d |
|- ( x = 0 -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ 0 ) ) = ( 0 x. ( P pCnt A ) ) ) ) |
5 |
|
oveq2 |
|- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
6 |
5
|
oveq2d |
|- ( x = y -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ y ) ) ) |
7 |
|
oveq1 |
|- ( x = y -> ( x x. ( P pCnt A ) ) = ( y x. ( P pCnt A ) ) ) |
8 |
6 7
|
eqeq12d |
|- ( x = y -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) ) ) |
9 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( A ^ x ) = ( A ^ ( y + 1 ) ) ) |
10 |
9
|
oveq2d |
|- ( x = ( y + 1 ) -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ ( y + 1 ) ) ) ) |
11 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x x. ( P pCnt A ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) |
12 |
10 11
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) |
13 |
|
oveq2 |
|- ( x = -u y -> ( A ^ x ) = ( A ^ -u y ) ) |
14 |
13
|
oveq2d |
|- ( x = -u y -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ -u y ) ) ) |
15 |
|
oveq1 |
|- ( x = -u y -> ( x x. ( P pCnt A ) ) = ( -u y x. ( P pCnt A ) ) ) |
16 |
14 15
|
eqeq12d |
|- ( x = -u y -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) |
17 |
|
oveq2 |
|- ( x = N -> ( A ^ x ) = ( A ^ N ) ) |
18 |
17
|
oveq2d |
|- ( x = N -> ( P pCnt ( A ^ x ) ) = ( P pCnt ( A ^ N ) ) ) |
19 |
|
oveq1 |
|- ( x = N -> ( x x. ( P pCnt A ) ) = ( N x. ( P pCnt A ) ) ) |
20 |
18 19
|
eqeq12d |
|- ( x = N -> ( ( P pCnt ( A ^ x ) ) = ( x x. ( P pCnt A ) ) <-> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) ) |
21 |
|
pc1 |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
22 |
21
|
adantr |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt 1 ) = 0 ) |
23 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
24 |
23
|
ad2antrl |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> A e. CC ) |
25 |
24
|
exp0d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( A ^ 0 ) = 1 ) |
26 |
25
|
oveq2d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( A ^ 0 ) ) = ( P pCnt 1 ) ) |
27 |
|
pcqcl |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. ZZ ) |
28 |
27
|
zcnd |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt A ) e. CC ) |
29 |
28
|
mul02d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( 0 x. ( P pCnt A ) ) = 0 ) |
30 |
22 26 29
|
3eqtr4d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( A ^ 0 ) ) = ( 0 x. ( P pCnt A ) ) ) |
31 |
|
oveq1 |
|- ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) |
32 |
|
expp1 |
|- ( ( A e. CC /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) ) |
33 |
24 32
|
sylan |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) ) |
34 |
33
|
oveq2d |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( P pCnt ( ( A ^ y ) x. A ) ) ) |
35 |
|
simpll |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> P e. Prime ) |
36 |
|
simplrl |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A e. QQ ) |
37 |
|
simplrr |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A =/= 0 ) |
38 |
|
nn0z |
|- ( y e. NN0 -> y e. ZZ ) |
39 |
38
|
adantl |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> y e. ZZ ) |
40 |
|
qexpclz |
|- ( ( A e. QQ /\ A =/= 0 /\ y e. ZZ ) -> ( A ^ y ) e. QQ ) |
41 |
36 37 39 40
|
syl3anc |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ y ) e. QQ ) |
42 |
24
|
adantr |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> A e. CC ) |
43 |
42 37 39
|
expne0d |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( A ^ y ) =/= 0 ) |
44 |
|
pcqmul |
|- ( ( P e. Prime /\ ( ( A ^ y ) e. QQ /\ ( A ^ y ) =/= 0 ) /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( ( A ^ y ) x. A ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) ) |
45 |
35 41 43 36 37 44
|
syl122anc |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( ( A ^ y ) x. A ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) ) |
46 |
34 45
|
eqtrd |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) ) |
47 |
|
nn0cn |
|- ( y e. NN0 -> y e. CC ) |
48 |
47
|
adantl |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> y e. CC ) |
49 |
28
|
adantr |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( P pCnt A ) e. CC ) |
50 |
48 49
|
adddirp1d |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( y + 1 ) x. ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) |
51 |
46 50
|
eqeq12d |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) <-> ( ( P pCnt ( A ^ y ) ) + ( P pCnt A ) ) = ( ( y x. ( P pCnt A ) ) + ( P pCnt A ) ) ) ) |
52 |
31 51
|
syl5ibr |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN0 ) -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) |
53 |
52
|
ex |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( y e. NN0 -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ ( y + 1 ) ) ) = ( ( y + 1 ) x. ( P pCnt A ) ) ) ) ) |
54 |
|
negeq |
|- ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> -u ( P pCnt ( A ^ y ) ) = -u ( y x. ( P pCnt A ) ) ) |
55 |
|
nnnn0 |
|- ( y e. NN -> y e. NN0 ) |
56 |
|
expneg |
|- ( ( A e. CC /\ y e. NN0 ) -> ( A ^ -u y ) = ( 1 / ( A ^ y ) ) ) |
57 |
24 55 56
|
syl2an |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ -u y ) = ( 1 / ( A ^ y ) ) ) |
58 |
57
|
oveq2d |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( A ^ -u y ) ) = ( P pCnt ( 1 / ( A ^ y ) ) ) ) |
59 |
|
simpll |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> P e. Prime ) |
60 |
55 41
|
sylan2 |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ y ) e. QQ ) |
61 |
55 43
|
sylan2 |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( A ^ y ) =/= 0 ) |
62 |
|
pcrec |
|- ( ( P e. Prime /\ ( ( A ^ y ) e. QQ /\ ( A ^ y ) =/= 0 ) ) -> ( P pCnt ( 1 / ( A ^ y ) ) ) = -u ( P pCnt ( A ^ y ) ) ) |
63 |
59 60 61 62
|
syl12anc |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( 1 / ( A ^ y ) ) ) = -u ( P pCnt ( A ^ y ) ) ) |
64 |
58 63
|
eqtrd |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( P pCnt ( A ^ -u y ) ) = -u ( P pCnt ( A ^ y ) ) ) |
65 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
66 |
|
mulneg1 |
|- ( ( y e. CC /\ ( P pCnt A ) e. CC ) -> ( -u y x. ( P pCnt A ) ) = -u ( y x. ( P pCnt A ) ) ) |
67 |
65 28 66
|
syl2anr |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( -u y x. ( P pCnt A ) ) = -u ( y x. ( P pCnt A ) ) ) |
68 |
64 67
|
eqeq12d |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) <-> -u ( P pCnt ( A ^ y ) ) = -u ( y x. ( P pCnt A ) ) ) ) |
69 |
54 68
|
syl5ibr |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) /\ y e. NN ) -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) |
70 |
69
|
ex |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( y e. NN -> ( ( P pCnt ( A ^ y ) ) = ( y x. ( P pCnt A ) ) -> ( P pCnt ( A ^ -u y ) ) = ( -u y x. ( P pCnt A ) ) ) ) ) |
71 |
4 8 12 16 20 30 53 70
|
zindd |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( N e. ZZ -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) ) |
72 |
71
|
3impia |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( P pCnt ( A ^ N ) ) = ( N x. ( P pCnt A ) ) ) |