Step |
Hyp |
Ref |
Expression |
1 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
2 |
1
|
3ad2ant1 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 <_ N ) |
3 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
4 |
3
|
3ad2ant1 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N e. RR ) |
5 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
6 |
5
|
3ad2ant3 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> P e. NN ) |
7 |
|
eluznn0 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) |
8 |
7
|
3adant3 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M e. NN0 ) |
9 |
6 8
|
nnexpcld |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. NN ) |
10 |
9
|
nnred |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. RR ) |
11 |
9
|
nngt0d |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 < ( P ^ M ) ) |
12 |
|
ge0div |
|- ( ( N e. RR /\ ( P ^ M ) e. RR /\ 0 < ( P ^ M ) ) -> ( 0 <_ N <-> 0 <_ ( N / ( P ^ M ) ) ) ) |
13 |
4 10 11 12
|
syl3anc |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( 0 <_ N <-> 0 <_ ( N / ( P ^ M ) ) ) ) |
14 |
2 13
|
mpbid |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 <_ ( N / ( P ^ M ) ) ) |
15 |
8
|
nn0red |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M e. RR ) |
16 |
|
eluzle |
|- ( M e. ( ZZ>= ` N ) -> N <_ M ) |
17 |
16
|
3ad2ant2 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N <_ M ) |
18 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
19 |
18
|
3ad2ant3 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> P e. ( ZZ>= ` 2 ) ) |
20 |
|
bernneq3 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ M e. NN0 ) -> M < ( P ^ M ) ) |
21 |
19 8 20
|
syl2anc |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M < ( P ^ M ) ) |
22 |
4 15 10 17 21
|
lelttrd |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N < ( P ^ M ) ) |
23 |
9
|
nncnd |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. CC ) |
24 |
23
|
mulid1d |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( P ^ M ) x. 1 ) = ( P ^ M ) ) |
25 |
22 24
|
breqtrrd |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N < ( ( P ^ M ) x. 1 ) ) |
26 |
|
1red |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 1 e. RR ) |
27 |
|
ltdivmul |
|- ( ( N e. RR /\ 1 e. RR /\ ( ( P ^ M ) e. RR /\ 0 < ( P ^ M ) ) ) -> ( ( N / ( P ^ M ) ) < 1 <-> N < ( ( P ^ M ) x. 1 ) ) ) |
28 |
4 26 10 11 27
|
syl112anc |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( N / ( P ^ M ) ) < 1 <-> N < ( ( P ^ M ) x. 1 ) ) ) |
29 |
25 28
|
mpbird |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) < 1 ) |
30 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
31 |
29 30
|
breqtrrdi |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) < ( 0 + 1 ) ) |
32 |
4 9
|
nndivred |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) e. RR ) |
33 |
|
0z |
|- 0 e. ZZ |
34 |
|
flbi |
|- ( ( ( N / ( P ^ M ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( N / ( P ^ M ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ M ) ) /\ ( N / ( P ^ M ) ) < ( 0 + 1 ) ) ) ) |
35 |
32 33 34
|
sylancl |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( |_ ` ( N / ( P ^ M ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ M ) ) /\ ( N / ( P ^ M ) ) < ( 0 + 1 ) ) ) ) |
36 |
14 31 35
|
mpbir2and |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( |_ ` ( N / ( P ^ M ) ) ) = 0 ) |