| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0lepnf |
|- 0 <_ +oo |
| 2 |
|
oveq2 |
|- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
| 3 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
| 4 |
3
|
adantr |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt 0 ) = +oo ) |
| 5 |
2 4
|
sylan9eqr |
|- ( ( ( P e. Prime /\ N e. ZZ ) /\ N = 0 ) -> ( P pCnt N ) = +oo ) |
| 6 |
1 5
|
breqtrrid |
|- ( ( ( P e. Prime /\ N e. ZZ ) /\ N = 0 ) -> 0 <_ ( P pCnt N ) ) |
| 7 |
|
pczcl |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |
| 8 |
7
|
nn0ge0d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> 0 <_ ( P pCnt N ) ) |
| 9 |
8
|
anassrs |
|- ( ( ( P e. Prime /\ N e. ZZ ) /\ N =/= 0 ) -> 0 <_ ( P pCnt N ) ) |
| 10 |
6 9
|
pm2.61dane |
|- ( ( P e. Prime /\ N e. ZZ ) -> 0 <_ ( P pCnt N ) ) |